4

(AFRLSRARTROS |

REPORT DOCUME»NTAT_IQ_ON PAGE ;l( . OOFE

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, -

gathering and miaintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this collection
of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, -

Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Profect (0704-0188,) Washington, DC 20503;
"1 AGENCY USE ONLY ( Leave Blank) 2. REPORT DATE 37 REPORT TYPE AND DATES COVERED
' 02/23/05 Final (12/01/01 - 11/30/04)
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Transition in High-Speed Boundary Layers: Numerical Investigations Using ' .
DNS and LES ‘ FA96202-inttil- 02— |[— O]
6. AUTHOR(S) ) . v v - |
Dr. Hermann F. Fasel _
7. PERFORMING ORGANIZA TION NAME(S) AND ADDRESS(ES) » | 8- PERFORMING ORGANIZATIO
- Department of Aerospace & Mechanical Engineering, College of Engineering, REPORT NUMBER o
University of Arizond, Tucson, AZ 85721 . . - o . , N
|9 SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESSES) 10, SPONSORING / MONITORING
. i AGENCY REPORT NUMBER
USAF, AFRL :
AF Office of Scientific Research
4015 Wilson Blvd., Room 713
Arlington, VA 22203-1954

11, SUPPLEMENTARY NOTES

122 DISTRIBUIION/ AVAILABILITY STATEMENT . 12b. DISTRIBUTION CODE )
. Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Direct Numerical Simulations (DNS) of supersonic flow over a flat-plate with and without adverse pressure-gradient at Mach’

3 were carried out in close collaboration with the experimental effort at Princeton University by G. Brown and co-workers. '
To confirm that simulations and experiments were based on the same ““baseflow," the experimental baseflow profiles were
compared with our Navier--Stokes results. The downstream development and the spatial growth rates of the disturbances
obtained from the Navier--Stokes computations and from experimental measurements were compared as well. Overall, a
remarkably good agreement was achieved. Towards the understanding of the nonlinear mechanisms, we investigated
numerous nonlinear resonance and breakdown scenarios. Our simmlations have showr £ iat due'to the stabilizing effects of

compressibility for supersonic boundary layers, the transition process can be stretched significantly in the downstream
direction and sometimes the transition process may even be aborted so that a turbulent boundary layer is never fully
established. The extent 6f the transition process and the intensity of the temperature fluctuations, and the resulting heat load,
depend strongly on the nonlinear mechanisms. . ' I

14, SUBTECT TERVS ' — ' 15. NUMBER OF PAGES
‘ ’ 124 - ‘
16, PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20, LIMITATION OF ABSTRACT
ORREPORT = ON THIS PAGE OF ABSTRACT S
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL .
NSN 7540-01-280-5500 ‘ Standard Form 298 (Rev.2-89)
' - _ : Prescribed by ANSI Std. 239-18

298-102 :

EnclOsuré 1



TRANSITION IN HIGH-SPEED BOUNDARY
LAYERS: NUMERICAL INVESTIGATIONS
USING DNS AND LES

A Final Report by

Hermann F. Fasel
Department of Aerospace and Mechanical Engineering
' The University of Arizona
Tucson, AZ 85721

Submitted to

Dr. John Schmisseur, Program Manager
The Air Force Office of Scientific Research

February 22, 2005

20050309 090




ABSTRACT

The lack of understanding of the physics of the transition in supersonic
boundary layer flows is a major impediment in developing reliable transition
prediction methods. This, in turn, represents a major obstacle in designing,
developing, and operating hlgh—speed flight vehicles such as the formerly pro-
posed National Aerospace Plane (NASP), the future high-speed civil trans-
port (HSCT), high-speed missiles, high-speed reconnaissance aircraft, and
the Theater Missile Defense (TMD) interceptors. Transition to turbulence
in high-speed flows is associated with significant increases in aerothermal
loads on the flight vehicle, requiring additional thermal protection. Super-
sonic transition research suffers from the fact that reliable experiments are
difficult and very expensive. Therefore, practically nothing is known about
the later, nonlinear stages of transition and, in particular, about the final
breakdown process. However, if and how the final breakdown occurs has
to be understood in order to identify which disturbance scenarios lead to
breakdown and which do not. This knowledge is essential for developing re-
liable transition prediction methods and it is critical for transition control,
that is, to delay transition and thus reduce the aerothermal loads. To this
end, Direct Numerical Simulations (DNS) of supersonic flow over a flat-plate
with and without adverse pressure-gradient at Mach 3 were carried out in
close collaboration with the experimental effort at Princeton University by
G. Brown and co-workers. To confirm that simulations and experiments
were based on the same “baseflow,” the experimental baseflow profiles were
compared with our Navier—Stokes results. The downstream development and
the spatial growth rates of the disturbances obtained from the Navier-Stokes
computations and from experimental measurements were compared as well.
Overall, a remarkably good agreement was achieved. Towards the under-
standing of the nonlinear mechanisms, we investigated numerous nonlinear
resonance and breakdown scenarios. Our simulations have shown that due to
the stabilizing effects of compressibility for supersonic boundary layers, the
transition process can be stretched significantly in the downstream direction
and sometimes the transition process may even be aborted so that a turbu-
lent boundary layer is never fully established. The extent of the transition
process and the intensity of the temperature fluctuations, and the resulting
heat load, depend strongly on the nonlinear mechanisms.
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1. INTRODUCTION

Transition in boundary layers at supersonic and hypersonic speeds is a ma-
jor unresolved topic in Fluid Dynamics. Although significant progress has
been made in recent years, crucial aspects of the transition physics are still
in the dark. In fact, the lack of a basic understanding of high-speed transi-
tion, and as a consequence a lack of reliable transition prediction methods,
was one of the key factors in the Defense Science Board’s (1992) decision
not to recommend the construction of a demonstrator vehicle for the Na-
tional Aerospace Plane. For the future High-Speed Civil Transport (HSCT)
(Parikh & Nagel, 1990), as well as for numerous defense-related applications
such as high-speed missiles (Hingst, 1990; Korejwo & Holden, 1992), high-
speed reconnaissance aircraft (Scott, 1996), and the Theater Missile Defense
(TMD) interceptors (Johnson et al., 1997), considerable progress toward the
understanding of high-speed boundary layer transition is required in order to
develop reliable transition prediction methods that can be used for the design
and safe operation of such advanced flight vehicles. The crucial need for re-
liable transition prediction methods for high-speed applications is due to the
fact that transition to turbulence in supersonic/hypersonic boundary layers
is associated with considerable increases in heat transfer. The increased heat
loads (caused by transition) on the structure of the flight vehicles represent
the main difficulties in designing and operating high-speed vehicles. Appro-
priate measures to guard against the heat transfer due to aerothermal loads
are expensive and/or result in significant weight penalties. Good estimates
of the transition location are of vital importance because only then can the
aerothermal loads and surface temperatures be adequately predicted. In ad-
dition to surface heating, transition to turbulence also has a significant effect
on the aerodynamic performance of high-speed flight vehicles as the skin fric-
tion for turbulent boundary layers is considerably higher than for the laminar
boundary layer.

The understanding of transition for low-speed (incompressible) boundary
layers is considerably ahead of that for high-speed (compressible) boundary
layers, although many crucial aspects are also still not understood even for
the low-speed case. There are several important reasons for the considerable
gap in understanding of high-speed transition relative to low-speed transition.
Of course, historically, high-speed flight, in particular hypersonic flight, has
not been considered until recently and therefore the need to understand and
predict transition did not exist earlier. However, there are two other main
reasons why it is more difficult to obtain knowledge for high-speed bound-
ary layer transition than for the low-speed case: i) Quality experiments for
high-speed transition are considerably more difficult to carry out than for



incompressible transition and require high-speed testing facilities that are
expensive to construct and expensive to operate. ii) The physics of high-
speed boundary layer transition are much more complex than for low speeds.
From linear stability theory (Mack, 1969), it is known that multiple instabil-
ity modes exist for high-speed boundary layer flows, in contrast to only one
mode (Tollmien-Schlichting, TS) for the incompressible case. The so-called
first mode in supersonic boundary layers is equivalent to the TS mode in in-
compressible boundary layers. However, in contrast to incompressible bound-
ary layers, where, according to the Squire’s theorem, two-dimensional waves
are more amplified than three-dimensional waves, for supersonic bound-
ary layers three-dimensional (oblique) waves are more amplified than two-
dimensional ones. Thus, experiments and theory always have to deal with
the more complicated problem of three-dimensional wave propagation. In
addition to the first mode, which is viscous, higher modes exist for super-
sonic boundary layers that result from an inviscid instability mechanism.
According to linear stability theory (LST), the most unstable higher modes
are two-dimensional and not oblique, as is the first mode. Also from linear

stability theory, it is known that the first mode is dominant (higher amplifica- -

tion rates) for low supersonic Mach numbers while for Mach numbers above 4
the second mode is dominant (most amplified). In addition, for typical super-
sonic/hypersonic flight vehicle configurations, the three-dimensional nature
of the boundary layers that occur, for example, on swept wings and/or lifting
bodies, can give rise to so-called cross-flow instabilities and, as a consequence,
cross-flow vortices that can be stationary or traveling.

Due to the difficulties in carrying out experiments (and “controlled” experi-
ments, in particular) and due to the existence of multiple instability modes,
the role and importance of the various instability modes in a realistic tran-
sition process are not understood at all. Of course, when amplitudes of the
various instability modes reach high enough levels, nonlinear interactions of
these modes can occur. As a consequence, the transition process in high-
speed boundary layers is highly non-unique (and our simulations support
this conjecture, see § 6), which means that slight changes in the environment
or vehicle geometry may significantly alter the transition process.

An additional difficulty arises from the fact that for high-speed boundary lay-
ers the transition processes in free flight may be very different from those in
the laboratory. As shown by Eissler & Bestek (1996), the difference between
conditions for free flight (“hot,” atmospheric conditions) and the labora-
tory (“cold,” laboratory conditions) has a considerable effect on the stability
behavior and, as a consequence, on the transition processes. This is best
summarized by a quote from Stetson (1990), a pioneer in experimental high-
speed transition research: “...one should not expect a transition Reynolds
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number obtained in any wind tunnel, conventional or quiet, to be directly
relatable to flight.” This fact clearly defines the usefulness and critical im-
portance of numerical simulations. The numerical simulation codes can be
tested and validated by detailed comparison with laboratory experiments.
Thereafter, they can then be applied with confidence to predict the effects
of free-flight conditions on the transition processes and the resulting aero-
dynamic and aero- thermodynamic behaviors. Thus, only simulations can
provide the crucial understanding and information for design and safe oper- -
ation of high-speed vehicles.




2. RELATED PREVIOUS RESEARCH

2.1 Theoretical Investigations

There are a large number of scientific publications available on transition
research, with the largest number of them dealing with low-speed transition.
Recent investigations of transition, both high- and low-speed, were presented
at the IUTAM Symposium on Laminar Turbulent Transition (Fasel & Saric,
2000). Some of the most important aspects of high-speed transition that
are relevant to the proposed research are discussed below. The main body
of the present knowledge concerning high-speed transition is still what was
obtained using Linear Stability Theory (LST) by Mack (1969, 1975, 1984,
2000). Based on the findings by Mack, the linear stability behavior of com-
pressible (supersonic) boundary layers differs from the incompressible case
in several significant aspects:

i. More than one instability mode exists for Ma > 2.2: the first mode and
the second and higher (multiple) modes.

ii. The first-mode disturbances are viscous (vortical) and are similar to the
Tollmien-Schlichting (TS) modes of incompressible boundary layers.
First-mode disturbances dominate (largest amplification rates) at low
supersonic Mach numbers. However, in contrast to the incompressible
case, the most amplified first-mode disturbances are three-dimensional
(oblique) and not two-dimensional.

ili. The second and higher modes are inviscid (acoustic) and dominate at
Mach numbers higher than about 4. The most unstable modes here
are always two-dimensional (in contrast to the first mode).

iv. In addition to the inviscid (acoustic) higher modes, Mack identified
additional viscous modes (‘viscous multiple solutions’) which, to date,
have not been identified in experiments. However, they were also found
in the Direct Numerical Simulations (DNS) of Eissler & Bestek (1996).

v. First-mode disturbances can be attenuated (as for the incompressible
case for air) by wall cooling, wall suction, and favorable pressure gra-
dients (Malik, 1989).

vi. The second and higher inviscid modes can be stabilized by favorable
pressure gradients and suction; however, they are destabilized by wall
cooling.




For linear stability theory analysis, the effects of the growing boundary layer
on the disturbance growth are typically neglected (“parallel theory”). How-
ever, non-paralle] effects can be included by using the Parabolized Stability
Equations (PSE) approach (Bertolotti, 1991; Bertolotti et al., 1992; Herbert,
1994). Depending on various parameters (Mach number, Reynolds number,
frequency, etc.), non-parallel effects can significantly influence the distur-
bance growth rates. LST and linear PSE are only applicable for the first
(linear) stage of the transition process where disturbance amplitudes are
small and nonlinear interactions are negligible. Nonlinear PSE, on the other
hand, is applicable to the nonlinear stages of transition (Bertolotti et al.,
1992; Herbert, 1994), although the computational effort becomes overwhelm-
ing when the development becomes strongly nonlinear in the later stages of
transition. Also, analogous to incompressible boundary layer transition, sev-
eral attempts have been made to apply secondary instability theory to model
the initial three-dimensional nonlinear development (see, Masad & Nayfeh,
1990; El-Hady, 1991, 1992; Ng & Erlebacher, 1992, for example). However,
whether or not any of these secondary instability mechanisms are relevant
for supersonic transition is an open question because it is very difficult to
unequivocally identify them in experiments (see § 2.2).

2.2 Experimental Investigations

Transition experiments in high-speed flows are extremely difficult and very
expensive. Therefore, relatively few successful experimental efforts have been
discussed in the open literature. Most experiments have emphasized inves-
tigations of the linear regime and the early stages of the transition process.
Some examples are the experiments by Laufer & Vrebalovich (1960); Kendall
(1975); Stetson et al. (1983); Stetson (1988); Kosinov et al. (1990); Stetson
& Kimmel (1992a); Schneider et al. (1996), and Corke (see Cavalieri, 1995).
An overview of the experimental efforts up to 1992 is given by Stetson &
Kimmel (19925). The experiments essentially verified some of the important
parts of the linear theory. However, quantitative differences often occur that
may be explained by the fact that in the experiments the transition pro-
cess was “natural” ie., it was initiated by the environmental disturbances,
and not by “controlled” disturbance input (analogous to a vibrating ribbon
as in incompressible transition experiments). Also, quantitative differences
between experimental measurements and LST may be caused by the effects
of the growing boundary layer being neglected in the linear stability theory
analysis (“parallel theory”).

All experimental efforts suffered more or less from difficulties in control-
ling the disturbance environment (such as sound radiated from turbulent
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boundary layers on the tunnel walls). Nevertheless, these “natural” transi-
tion experiments could identify first and second instability modes (Kendall,
1975; Stetson et al., 1983). However, for example for Mach 2, considerable
discrepancies arose between boundary layers on a flat plate and boundary
layers on axisymmetric cones when “blow down” facilities were used. For ax-
isymmetric cones, high-frequency second modes were dominant, while only
low-frequency first mode disturbances were observed for the flat plate (Stet-
son & Kimmel, 1992b). In contrast, in an experiment using a Ludwieg tube
for a sharp-nosed cone at Mach 5, no dominant second-mode disturbances
could be detected (Wendt, 1993).

With the more recent experiments for a flat plate and axisymmetric cones
at Mach number 3.5 in the NASA-Langley “Quiet Tunnel,” a number of dis-

crepancies between LST and other experiments were resolved (Chen et al.,

1989; Cavalieri, 1995). Indications of nonlinear developments in the transi-
tion process were observed by Stetson et al. (1983) for a cone at Mach 8.
Most of the experimental efforts suffered from the deficiency that no “con-
trolled” disturbances could be introduced to allow for detailed quantitative
comparisons with linear theory and, in particular, to allow for systematic
investigations of the nonlinear stages of transition. Because of the lack of ex-
perimental evidence concerning the process in the later stages of transition,
it is totally unclear which instability modes and which nonlinear mechanisms
are responsible for the final breakdown to turbulence in supersonic boundary
layers. The controlled experiments for a Mach 2 boundary layer by Kosinov
& Tumin (1996) using a harmonic point source for the disturbance excitation
have indicated, however, that secondary instability mechanisms were present.
In fact, Kosinov & Tumin speculated that it was a subharmonic resonance
with “oblique” fundamental disturbances. More recently, Maslov and co-
workers (see Shiplyuk et al, 2003) reported “controlled” experiments for a
sharp-nosed cone at Ma = 5.95 using a glow- discharge actuator to generate
harmonic point source disturbances. They investigated several nonlinear in-
teractions and identified a “classical” subharmonic resonance (with the 2-D
second mode as primary disturbance) as a possible breakdown mechanism
involving possibly a 3-D first mode as the subharmonic. However, in order
to confirm this conjecture, detailed spatial and temporal resolution of the
measurements would be required which, of course, is difficult experimentally.
Shiplyuk et al. (2003) state in their paper, that numerical calculations would
“be helpful to clarify the scenarios of nonlinear interactions that are identified
in the present work.
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2.3 Numerical Simulations

Due to the difficulties in experimental investigations of high-speed boundary
layer transition and due to the limitations of linear stability theory, so-called
Direct Numerical Simulations (DNS) represent a promising tool for high-
speed transition research. In DNS the complete Navier-Stokes equations are
solved directly by proper numerical methods without making restricting as-
sumptions with regard to the baseflow and the form and amplitude of the
disturbance waves. Therefore, DNS is particularly well suited for investiga-
tions of the nonlinear development that is characteristic of the later stages of
high-speed boundary layer transition. Two fundamentally different models
are used for DNS: First, the so-called “temporal model,” which is based on the
assurption that the baseflow does not change in the downstream direction
(thus excluding nonparallel effects). Also, assuming spatial (downstream)
periodicity of the disturbances, the disturbance development (growth or de-
cay) is then in the time-direction. The temporal model is analogous to the
temporal approach in LST with the frequency being complex and the spatial
wave number real. Due to the underlying assumptions, the temporal model
can only provide qualitative results. On the other hand, since a relatively
short integration domain can be used in the downstream direction (typically
one or two wave lengths of the fundamental wave) temporal simulations are
relatively inexpensive.

In contrast, in the “spatial model” no assumptions are made with regard
to the baseflow (thus nonparallel effects are included). The disturbance de-
velopment (growth or decay) is in the downstream direction as in physical
laboratory or free-flight situations. Thus, the spatial model allows realistic
simulations of high-speed transition and direct comparison with wind-tunnel
or free-flight experiments. However, simulations based on the spatial model

are typically much more costly than for the temporal model because a much -

larger downstream integration domain is required (many wave lengths of the
fundamental disturbance wave). This is particularly true for simulations of

high-speed boundary layer transition, where the growth rates of the distur- -

bance waves are much smaller than for the incompressible case and where
the growth rates of certain modes decrease with increasing Mach number.
Thus, relatively large (in the downstream direction) integration domains are
required to allow small disturbances to grow to the large amplitudes that
characterize the nonlinear stages of the transition process and finally lead to
the breakdown to turbulence. As a consequence, spatial simulations of high-
speed transition are computationally very challenging. Detailed discussions
of the DNS methodology for investigations of boundary layer transition, in
particular, discussions of the temporal and spatial approach, are given by

12




Fasel & Konzelmann (1990) , Kleiser & Zang (1991), and Reed (1993).

Probably the first transition simulation for supersonic boundary layers, al-
though restricted to two- dimensional, yet spatially evolving, disturbances,
was by Bayliss et al. (1985), who employed an approach analogous to that by
Fasel (1976) for incompressible boundary layers. The first three-dimensional
yet temporal DNS for flat-plate high-speed boundary layer transition was
performed by Erlebacher & Hussaini (1990). Here, only the linear and early
nonlinear stages were explored. Other temporal simulations were performed

by Normand & Lesieur (1992), Pruett & Zang (1992), Dinavahi & Pruett -

(1993), Adams & Kleiser (1993). From such temporal simulations, Normand
& Lesieur (1992) found that, for their case of a flat-plate boundary layer with
Ma = 5, transition occurred via a subharmonic secondary instability for the
second mode. This finding was consistent with results from simulations by
Adams & Kleiser (1993), Pruett & Zang (1992), and Dinavahi & Pruett
(1993) for a boundary layer at Mach 4.5 on a hollow cylinder (the axisym-
metric analog of a flat-plate boundary layer). However, the main weakness of
these “temporal” simulations is the fact that they do not take the boundary
layer growth into account. In fact, experiments by Stetson & Kimmel (1993)
and PSE calculations by Chang et al. (1991) indicated that subharmonic

resonance may not be the preferred route to transition in realistic, growing

boundary layers (which include nonparallel effects).

Realistic simulations of transition scenarios including the effects of the grow-
ing boundary layer require the use of the spatial simulation model. The
first three-dimensional spatial simulations of transition in supersonic bound-
ary layers were reported by Thumm (1991) for a Mach number of 1.6. In

fact, from these, and follow-up simulations (Fasel et al., 1993), it was dis-

covered that a new “Oblique Breakdown” mechanism produces much larger
growth rates than either subharmonic or fundamental resonance and requires
much lower disturbance amplitudes. Therefore, the “Oblique Breakdown” is
a likely candidate for a viable path to transition for supersonic boundary lay-
ers. Using PSE calculations, Chang & Malik (1993) confirmed the validity of
this oblique breakdown for a flat-plate boundary layer at Ma = 1.6. Based
on our DNS code (see Fasel et al., 1993), Bestek & Eissler (1996) performed
simulations for Mach 4.8 and investigated various nonlinear mechanisms in-
cluding the “oblique breakdown” mechanism. Bestek & Eissler also found,
for the first time, an additional “higher viscous” mode, which Mack (1969)
had predicted using LST analysis. Pruett & Chang (1993) carried out spa-
tial DNS for a flat-plate boundary layer at Mach 4.5 and provided a detailed
comparison with PSE results. Later, an improved version of the code (Pruett
et al., 1995) was applied to a simulation of transition on axisymmetric sharp
cones at Mach 8 (Mach 6 after the shock; Pruett & Chang, 1995). The

13




simulation was combined with PSE calculations such. that the linear and
moderately nonlinear stages were computed by PSE while the strongly non-
linear and breakdown stages of transition were computed by spatial DNS.
This approach was motivated by the experience that linear and moderately
nonlinear wave propagations can be computed more efficiently with PSE
while the strongly nonlinear and breakdown stages (requiring many spanwise
Fourier modes) are computed more efficiently with DNS. In this simulation, a
second-mode-breakdown resonance was also investigated. The so-called rope-
like structures obtained from numerical flow visualizations of the simulation
data for this breakdown process are similar to those observed in high-speed
transitional boundary layers on cones (see Pruett & Chang, 1995). Using
numerical simulations, the leading edge receptivity of high-speed boundary
layers has been investigated extensively by Zhong and co-workers (see Zhong,
2001). More recently, the magnetic field effects on the second-mode insta-
bilities for a weakly ionized boundary layer at Ma = 4.5 using numerical
simulations were investigated by Cheng et al. (2003).

Relatively few attempts have been made to employ Large-Eddy Simulation
(LES) for transitional flows in supersonic boundary layers (see, for example,
Normand & Lesieur, 1992; Zang et al., 1992). These simulations reported
in the literature have to be viewed as being of an éxploratory nature with
regard to the applicability of LES for boundary layer transition. Nevertheless,
these attempts demonstrated that LES could be employed advantageously
for supersonic transition simulations. The main issues in applying LES for
supersonic transition simulations are the use of proper subgrid-scale (SGS)
models that are physically consistent through the entire transition process.
Of course, LES would be a highly valuable tool for investigating the late
stages of transition. As mentioned previously, DNS for supersonic boundary
layer transition is very expensive due to the large computational domains that
are required in the downstream direction. In addition, for simulations that
include the final stages of transition (the actual breakdown to turbulence), an
extremely fine grid would be required which, as a consequence, would place
high demands with regard to computer memory and computation times.
LES on the other hand would require considerably less resolution and, as a
consequence, the amount of computer memory and computation times would
be reduced accordingly.
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3. COMPUTATIONAL METHOD

The time-dependent flow over a flat plate is investigated using the spatial
DNS model. This model allows for a direct comparison with experiments
where disturbances develop in the downstream direction. The complete
Navier-Stokes equations for compressible flow form the governing equations
and thus include all non-parallel and nonlinear effects. In this chapter, details
on the governing equations, boundary and initial conditions, buffer domains
and introduction of controlled disturbances are given followed by a brief sum-
mary of the numerical method. Details on the numerical method and code
performance can be found in Harris (1997) and von Terzi (2004).

3.1 Governing Equations

Conservation of mass (continuity equation), conservation of momentum, and
conservation of total energy form the set of governing equations. These
are applied to a three-dimensional Cartesian coordinate system. The non-
dimensional form of the governing equations is obtained by by using a length
scale (the length of the plate in the experiments L*.) and free-stream values
of velocity, temperature, density, and specific heat (Uss T P and Cp,,
respectively) for normalization of all variables. The non-dimensmnal length
of the flat plate becomes equal to one and the following non-dimensional
variables are obtained:

o z; ‘= ot
Ly T Ly/Ug
u;:l p* T* p* E;t
U = ) = ) T= y D= E,=
TUL o T T rUer T T U
#* M* k* ,1'
#’ = = ) k = ¥ » = -
wo  wH(TE) . MG Pr
The Mach and Reynolds numbers are introduced as
Ma= Yo - Ve . Re=Pelell (3.1)
Geo (k=1)C3 T, Heo

respectively. The non-dimensional continuity, momentum and energy equa-
tions are given by

op O _
Fri o, (puj) =0 (3.2)
Opu; O
g? +5 oz, (Puzuy +0yp—Ty) =0 (3.3)
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OFE 0
# + '55:: ([Et +p]uj = UTy + Qj) =0. (34)
The total energy, viscous stress and heat flux terms are
T ‘ UpUk
E, = , 3.5
’ p(n(n—l)MaQ-'- 2 ) (3:5) _
Lk (Ou Oy 2, Ou |
"= Re (03,— + Oz; 35” Oz (36)

and p T

" (k~1)Md®RePr 0z, '
respectively. The viscosity is obtained using Sutherland’s law and the equa-
tion of state becomes

T
= . 3.8
LTy (3:8)
3.2 Computational Domain
AN
AN
AN N\ -
b= i
- y /
P - 7
e
W x 77 -
z=0 . g——— gy \
U, -
z:O,S}_z — Y T T T : |
Xo X; X5 X3 X4 X5 Xy

Figure 3.1 Computational domain and boundaries.

The equations are discretized and solved in the computational domain shown
in figure 3.1. The dashed lines indicate the boundary layer that forms when
a uniform flow with velocity U, encounters the flat plate. An example for a
computational domain is represented by a box which starts at z, and ends
at zy. The value for the domain height is y5,. Disturbances are introduced
between the locations z, and z,. All simulations performed in this work deal
with 3D waves generated in pairs in the disturbance slot with ¥ and —¥ as
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their wave angle. The wave angle determines their spanwise wave number
since v
tan(¥) = o (3.9)

The wave with ¥ and the wave with —¥ as its wave angle have the same
spanwise wave number 7. The domain width is chosen such that it matches
half of one wavelength A, of the 3D waves. Locations z3, 24 and x5 specify
the start and end locations of the pressure gradient (if applied). They are
explained in more detail in § 3.4.4.

3.3 Initial Conditions

All simulations are carried out in two parts. First, a “baseflow” is computed
as the steady solution to the Navier—Stokes equations and, second, this base-
flow is used as an initial condition for the stability investigations, where
controlled disturbances are then introduced. For the (unsteady) forced flow
simulations, the baseflow is also required as input for the inflow, outflow and
free-stream boundary conditions (see § 3.4).

3.3.1 Using Compressible Blasius Similarity Solution

All simulations at supersonic speeds use the compressible boundary layer sim-
ilarity solution as initial condition for obtaining the baseflow. The similarity
solution is obtained from the Blasius boundary layer ordinary differential
equation (ODE) where the prime denotes a derlvatwe with respect to the
independent (similarity) variable 7.

Cf" +ff" =0 - (3.10)
(FC;: /> + fg/ + C(f”)2 =0 . (3.11)

with

* , %

il

Plolts,
f=Ffn)
g=g)

and
(3.12)

Yo / .
=T | P Y-

V2P U i re
Several simplifications in deriving this ODE were made so that the Navier-
Stokes solution will differ from this initial condition. These perturbations will
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travel downstream and, finally, will be convected out of the computational
domain. The resulting flow field is the desired baseflow for the simulations
without a pressure-gradient. However, for the simulations with an adverse
pressure-gradient (APG) in the downstream direction, the above “basefiow”
is taken as an initial guess. Then, a constant pressure gradient was introduced
through the free-stream boundary condition and the baseflow with APG is
computed (see figure 3.2). _

input: input: serves asinput
compressible converged base flow for disturbance
similarity solution converged APG through converged calculation

without APG compressible | free~stream BC compressible
r———— —————) e ese—-
base flow base flow

without APG with APG

Figure 3.2 Generation of a compressible baseflow with APG.

3.3.2 Using Falkner—Skan Similarity Solution

For the incompressible validation simulation with an adverse pressure gra-
dient in the streamwise direction, the solution to the third-order ODE of
Falkner & Skan (1931) (c.f. Schhchtmg & Gersten, 2000) is used as the ini-
tial condition for obtaining the baseflow. These equatlons were derived by
introducing the similarity variable

n=y\/ (m; D Up(z) =y\/ (m; D Ue(?Re, - (3.13)

as the independent variable and f as the dependent variable with

u* U

"= e 14

(again a prime denotes a derivative with respect to ). This transformation
is only possible if the following assumption for the free-stream velocity U, (z)

is made: _
Ue(z) = Upz™, (3.15)

with Up = z5™ and m = fg/(2 — By) where By is the Hartree parameter.
For By = —0.1988 the flow separates.
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The z-momentum equation provides an expression for the pressure gradient

o OU.(z)
5 = VO

Integrating this expression in z leads to the pressure distribution at the free-

stream 1 x 1
- —_ (1 _ (2 \2m
p=50- P+ —
with 1/(kMa?) as the integration constant. Equation (3.17) is the final equa-
tion which is implemented into the compressible DNS code. The integration
constant represents the value of the pressure at the free-stream at location
z = 2o and is obtained by equation (3.8) for p =T = 1. The Mach number
appears in equation (3.17) since the DNS code used for the present research
is compressible.
Finally, the third-order ODE derived by Falkner & Skan has the form

"+ "+ Bua(l—f?) =0 (3.18)

with the boundary conditions

(3.16)

(3.17)

f0) =0 f(0)=0; f'(o0) =1. (3.19)

It is solved numerically and the solution serves as an initial condition for the
DNS code.

Since the DNS code solves the compressible Navier-Stokes equations and
the initial condition is incompressible, a value for the temperature has to be
computed. The total enthalpy h; is assumed to be constant over y. This
means that the enthalpy in the free-stream is equal to the enthalpy in the
boundary layer

h;, = h} = const. (3.20)
The substitution of hf = ¢;T* + 1/2 (u*? + v*?) into equation (3.20) gives
N et i I o/
. CPT + — = CpT; + ; (3.21)
which is put in non-dimensional form and solved for T'
T=1+2 1Ma2(U3 —u?—?); (3.22)

where v has the form

v= vmglzﬁ <m+1 nf' - f> (3.23)

Table 3.1 summarizes the equations that are used in the DNS code to generate
an appropriate initial condition for the incompressible validation case with
adverse pressure gradient.
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| quantity || equation ' [
ure || f'Ue
ve |y Geinf' — 1)
pro || 51— (&)™) +1/(xMa?)
Trc | 1+ 52 Mo (U2 — u}o — vds)
prc | & Ma® pro/Tic

Table 3.1 Equations used for initial condition of incompressible validation

case with APG.

3.4 Boundary conditions

The computational domain and its boundaries are shown in figure 3.3. In
the lateral direction z, periodicity is assumed. More details about the lateral
boundary can be found in von Terzi (2004). The baseflow and the forced
flow simulations are computed with the same boundary conditions with the
exception of the free-stream, where for the baseflow the pressure is fixed and
for the unsteady simulations a decay condition is employed for all disturbance

quantities.

Lfree-sb'eam baundary]

YMm

-
— —

_____
-t

AN

wall boundary

Figure 3.3 Boundaries of the computational domain.

3.4.1 Inflow

Incompressible Flow

At the inflow, all quantities except for the pressure are fixed with the value

of the initial condition

¢ = $rc - (3.24)




For the pressure, a gradient condition is employed. Because of the pressure
gradient in streamwise direction, its derivative is not equal to zero. The
change of the pressure in y is neglected so that its derivative in z has the
same value as at the free-stream over the entire inflow

% — _U2ma*™" and % ~0, . (3.25)

for flow with and without APG, respectively. Since T and p are fixed the
equation of state is violated. Nevertheless, upstream-traveling sound waves
can pass through the boundary.

Compressible Flow

For a compressible flow all quantities are fixed to the value of the initial
condition _

¢ =édic, (3.26)
except for the subsonic region of the boundary layer where the pressure
derivative is set to zero o

3 =0 (3.27)

This is not valid for a streamwise pressure gradient but the subsonic region
is very small and the ill-posed problem did not produce any difficulties.

3.4.2 Outflow

Incompressible Flow

The outflow is treated by applying

6%¢

0z = 0, (3.28)
where ¢ symbolizes the conservative variables p, pu; and E. Since the pres-
sure is not held constant at the inflow, a Dirichlet condition must be employed
to the outflow

p=DpIc, (3.29)

otherwise the pressure field drifts from its specified value. For the incompress-
ible validation case, the fixed pressure was responsible for strong reflections
of pressure waves. The reflections caused upstream-traveling waves in all
other quantities that were reflected at the inflow. A remedy for this problem
was found by ramping down the disturbances before they reach the inflow or
outflow boundary (see § 3.5).
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Compressible Flow

For all conservative variables as well as for the pressure, the condition

8¢
dz?

is applied. Reflections of disturbances were very weak, however this condition
fails where © < 0 or u = 0. For that reason, a buffer domain (see § 3.5),
which ramps the disturbances to zero, had to be used, in particular for the
oblique breakdown investigations.

=0 | (3.30)

3.4.3 Wall

The incompressible and compressible calculations are performed with the
same wall boundary conditions. The previously described computational
boundary conditions are artificial and usually do not represent the physical
solution at the enforced location. An exception for that is the wall. The
no-slip and no-penetration conditions are used, thus

u=v=w=0. (3.31)

Note that v is non-zero at the disturbance slot. The wall is assumed to be
adiabatic, i.e.,

oT -
Fvi 0, (3.32)
and the pressure is calculated from the y-momentum equation
op 0, , 0 0 0
oy —55(;00 )+ 5 (Tay) + %(Tyy) + 55 (7). (3.33)

Note that the time derivative is zero for the steady baseflow and neglected
at the forcing slot for the simulations with forcing.

3.4.4 Free-Stream

One focus of this report is the investigation of the influence of an APG on
transition for a compressible boundary layer. For this purpose, an APG
has to be introduced. The simplest way of achieving this goal is to provide
an appropriate free-stream boundary condition. In experiments a pressure
gradient can be created at the free-stream through geometrical changes. For
supersonic flows, a decreasing of the cross-sectional area of the flow passage
and, for subsonic flows, an increasing of the cross-sectional area of the flow
passage generate an APG
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Incompressible Flow

For the baseflow calculation, as an initial condition, a Falkner-Skan similarity
solution is employed (see § 3.3.2) which already has the correct pressure
distribution at the free-stream. Therefore p only needs to be fixed to the

initial value
p=DpIc- ' (3.34)

For u and p, von Neumann conditions are used, hence

ou
— =0 3.35
- (339
and
op A
@ =0. (3.36)

This is a good approximation because the density should be constant (in-
compressible flow) and u should not change in y outside of the boundary
layer. From the continuity equation the derivative of the v-velocity can be
obtained,

VR ™ (3:37)
Using
Ue(z) = Upz™ (3.38)
equation (3.37) yields
ov 1
5; = —Uo mx . . (339)

For the unsteady simulations, an important issue is the imposition of the
pressure gradient. A boundary condition at the free-stream should not mod-
ify the specified pressure distribution of the baseflow and, at the same time,
allow disturbances to pass the domain boundary. Kloker (1993), in his code,
divided the flow quantities into a disturbance flow and a baseflow. For the
disturbance quantities he applied a decay condition. The u-velocity of the
baseflow was set to the similarity value of equation (3.15) and the pressure
derivative in z to equation (3.16). This has the advantage that the base
pressure distribution is fixed and disturbances can travel out of the domain.
Similar conditions are applied in this work. All quantities are divided into a
baseflow and disturbance flow at the free-stream

b=drc+¢. (3.40)

For the disturbances, the decay condition is applied and the base part is
kept constant. A detailed.derivation of the decay condition can be found
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in Thumm (1991). Here, only the final equation is presented. For the most
general case, a compressible flow, the decay condition has the form

o

il o?(l~Ma (1-c)2)++2 ¢ (3.41)
In the limit oy
Jm (3.42)

equation (3.41) reduces to the incompressible version (c.f. Kloker, 1993)

?8%’ — ViR, (3.43)

10
= B4 (Ay)
- © B4 (4y) -
08 <B4 (ay2) « 1«7
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Figure 3.4 Validation of the decay-condition. Amplitude distribution of a
TS-wave versus Resi. BI4 and B4: calculations by von Terzi (2004) with
decay condition on total flow variables; ITVALDC: decay condition only on
disturbance variables.

Figure 3.4 shows a test calculation (see appendix C for the computational
parameters) where the previously described decay condition is employed. As
a test case, the primary instability behavior of an incompressible low over a
flat plate is simulated. The amplitude of the 2D disturbanees, that are in-
troduced into the computational domain, is small, so that a T'S wave in the
linear stage is excited. The graph illustrates the logarithm of the downstream
amplitude distribution of the u-velocity normalized with its minimum. Sim-
ulations by von Terzi (2004) are utilized as comparison. Case BI4 agrees
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very well with Fasel & Konzelmann (1990) and is taken as the result which
reproduces the correct amplitude distribution. It was obtained from an in-
compressible code. For higher Reynolds numbers (based on the displacement
thickness), the coarse and fine version of B4 vary from BI4. Both versions
of B4 are conducted with the compressible code which is also used for the
present research, but with a different implementation of the decay condi-
tion which did not fix the pressure gradient at the free-stream boundary.
IVALDC, the case with the new decay condition does not deteriorate the
solution of the case without APG. '

Compressible Flow

Figure 3.2 illustrates the steps which have to be taken to start a forced
flow simulation with APG. First, a baseflow without any pressure gradient
is generated. Then, at the free-stream, a specified pressure distribution is
introduced and the solution converged out. Finally, this baseflow serves as
initial condition for the unsteady simulation. These three steps need dif-
ferent free-stream boundary conditions which are explained in the following
paragraphs.

For the baseflow calculation without APG, a characteristic boundary condi-
tion derived by Harris (1997) is used :

?-2 = 0. (3.44)

All variables do not change along the direction of the characteristics that is
denoted by ¢ and given by the Mach angle.

0T

NS
LSRG 19a I0U Lwy B

riw

Figure 3.5 Adjustment between similarity solution and DNS solution. The
pressure distribution of the first 30 points is plotted.

At the inflow, the adjustment between» the similarity solution and the DNS
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solution causes an effect similar to an expansion fan which leaves the domain
along characteristics (figure 3.5). If the pressure is fixed to prescribe & desired
pressure distribution at the free-stream, which is explained later, the expan-
sion fan is reflected and makes it impossible to create a clean baseflow with
APG. Therefore, the grid points where the pressure is strongly influenced
by the expansion fan are cut off the computational domain and a smaller
domain is used for the generation of the baseflow with APG.
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- domain of interest
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Figure 3.6 Pressure distribution at the free-stream (p;c) and its derivative
(8p1c/0z). 3 is the location where the linear distribution with positive
slope starts and z4 — transdz is its end. z4 + transdz can serve as a start
location for a linear distribution with negative slope which ends at z5. Here
no distribution with negative slope is used. transdz is a parameter which
can be specified in the DNS code and which defines the interval where a
quadratic Bézier—curve is employed.

In order to obtain a baseflow with APG, the pressure has to be fixed at
the free-stream. Figure 3.6 shows one example. In all calculations, a con-
stant gradient was employed. It is not possible to prescribe this pressure
distribution throughout the domain from the inflow to the outflow, because
at the corner between inflow and free-stream a shock would be generated
which would travel along a characteristic to the wall. Therefore a blending
function has to be used which smoothly connects the original pressure distri-
bution (from the calculation with zero pressure gradient) with the new APG
distribution. For this purpose a sin®-function is employed that starts at z
and ends at z3. The solid line represents the pressure along the z-direction
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at the upper boundary and the dashed line its first derivative. From z3 on,
the pressure is increased until z4 — transdz and its distribution has the slope
Ap,/(z4—23). transdz is a parameter of the DNS code which specifies half of
the interval which is used to connect the pressure distribution upstream of z4
with the distribution downstream of z;. As a blending function, a quadratic
Bézier-curve is prescribed. A Bézier—curve is defined by a set of control
points which determines its shape. It is a polynomial and was invented by
the French engineer Pierre Bézier in the 60ies. The domain downstream of
z4 — transdz represents a buffer domain that can be used to accelerate the
flow by decreasing the pressure linearly with the slope —Ap,/(zs — z4) from
location z4 + transdz to zs. The domain for the forced flow calculation
is indicated as “domain of interest.” After the baseflow with the APG is
converged out, the unusable parts of the domain are cut off (for example up-
stream of z3 and downstream of z4 —transdz). The derivative of the pressure
shows no jumps at the locations where the blending functions connect differ-
ent pressure distributions and this is necessary for the z-momentum equation
of the governing equations (3.3) since there the derivative is calculated. The
other flow variables are treated by applying equation (3.44).

The unsteady simulations for the compressible flow are carried out with the
same free-stream boundary condition as for the incompressible flow. All
variables are treated by employing equation (3.41).

3.5 Buffer Domains at Inflow and Qutflow

The buffer domain technique, especially ramping down disturbances before
they reach the outflow or even the inflow, is very effective to avoid reflections
of disturbance waves at the boundaries. Kloker (1993), Eissler (1995) and
Meitz (1996) used the ramping method in their investigations. Here, this
technique is applied mainly for the outflow. For the incompressible valida-
tion, a ramping function is also used for the inflow. In the buffer domain
all quantities, p, pu; and E, are multiplied by a function which ramps the
disturbance values to zero, such that the total quantities reach their base
(initial) values:

fr(2) = fre(@) + c(€)(f(z) — fro(z)). (3.45)

In equation (3.45), f(x) symbolizes the total flow quantities and frc their
base values. The difference of f(z) — fro(z), which is the disturbance value,
is multiplied by a weighting function ¢(¢). f.(z) is the final value in the
buffer region. Meitz (1996) applied a weighting function of the form

o(e) = e (1 — £, (3.46)

27




where ¢ is defined as

zn, —x
= o, — e (8.47)
for the inflow, and
z — o2
= ———tart_ (3.48)

- - N x% - zggrt
for the outflow. z,,: and z.,g are the start and end location of the buffer
domain.

During the simulation, the weighting function is applied at every Runge-
Kutta timestep so that

Freesten(z) = o(g) foldster(z), (3.49)

If this operation is performed n times, then a wave that travels through
the buffer domain with the flow “experiences” the multiplication with c(¢)
n times. This leads to an “effective ramping function” of c(¢)”. The time
a wave requires to travel through the buffer domain is determined by its

phase speed and the length of the buffer domain. From this time, n can be"

“calculated. If n becomes large, repeated multiplications of c(¢) with itself
cause an increasing slope of the effective ramping function. This is definitely
not desirable because a too steep effective ramping function can again lead
to reflections of disturbances. For all calculations, n was small enough, such
that the ramping function defined in equation (3.46) could be applied on
buffer domains with the length of one or two streamwise wavelengths A,.

3.6 Disturbance Generation

Harmonic disturbances are introduced to the boundary layer by periodic
blowing and suction through a slot in the plate. The slot is located about
one Tollmien-Schlichting wavelength downstream of the inflow (see figure
3.1). All other boundary conditions are not affected. Note that the pressure
boundary condition of equation (3.33) is only approximately valid for a non-
zero wall-normal velocity, however, it is a reasonable approximation as long
as AB[Re = AF <1, where f is the forcing frequency and A the forcing
amplitude. The disturbance velocity v is given as

v(z,t) = Avy(x) sin(Ft). (3.50)

For this study, the amplitude is ramped up from zero over the first forcing
period, ie., for 0 < ¢t < T = 27/8. In addition, a zero net mass flux enters
the computational domain due to the prescribed spatial disturbance profile
up(z) (see figure 3.7, with the circles indicating the values for a 16-points
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resolution on a slot of width A;/2). In order to balance considerations with
respect to receptivity and resolution requirements, the slot should be between
Az/4 and A, long with a minimum of eight points in the x-direction. The
slot itself should be far enough away from the inflow (see appendix B.1.4).

10-lﬁ-
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Figure 3.7 Disturbance profile v,(z) (reproduced from Harris, 1997).

3.7 Numerical Method for Solving the Governing Equations

A spatial DNS model is used with a fourth-order Runge-Kutta method for
time-advancement and “fourth-order” split finite differences in the z- and
y-directions. In the z-direction, a periodic solution is assumed and, conse-
quently, a Fourier transformation is applied. Note that, for three-dimensional
calculations, the nonlinear terms of the governing equations are computed in
physical space and are then transformed back to spectral space for differenti-
ation and integration. Variables are symmetric over one-half of the spanwise
wavelength (except for w, which is antisymmetric over this distance). Thus
only half a wavelength in the 2-direction needs to be computed. In order to
avoid aliasing errors, the number of physical planes is chosen to be greater to
3/2 spectral planes. The numerical method is explained in detail in Harris
(1997) and von Terzi (2004).
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4. VALIDATION CASES

The original code, written by Harris (1997) for investigations of compressible,
plane wakes, has already been extensively validated (c.f. von Terzi, 2004).
Here, several additional validation cases demonstrate that the code is able to
perform stability investigations of supersonic flow over a flat-plate with and
without adverse pressure-gradient (APG). Nonetheless, physical and com-
putational parameters must be chosen carefully to accurately capture the
physics of the flow and to ensure the stability of the numerical method. First
two cases from the literature are recomputed. The references (Eissler, 1995;
Thumm, 1991) performed supersonic stability investigations—one at a Mach
number lower and the other at a higher one than for the present study. The

validation of the code with pressure gradient is divided into three sections. °

First, the code is validated for an incompressible flow. For comparison, case
A of Kloker (1993) is recomputed. In the following section the LST solver of
Mack is described, especially the steps that were required to get a solution
for a flow with pressure gradient. Finally, two DNS calculations (one without
and one with APG) are compared W1th the corresponding solutions of the
linear stability solver of Mack.
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Figure 4.1 Linear stability diagram for Ma = 1.6; the solid horizontal line
denotes case Al of Thumm (1991).
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4.1 Supersonic Flow at Mach 1.6

Case Al of Thumm (1991) allows for validating the growth of a three-
dimensional TS-wave with results from DNS and linear stability theory. The
integration domain ranges from R; = 200 to R, = 980 with a forcing fre-
quency of § = 5.0025. This case is marked in the corresponding stability
didgram (see figure 4.1). The computational parameters are summarized in
appendix C, table C.1. As can be seen in figure 4.2 the amplitude and phase
distributions agree with the results of Thumm (1991). The amplification rate

1
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Figure 4.2 Distributions of amplitude (left) and phase (right) for «/, 7" and
p' (from top to bottom) at R, = 680, for case Al of Thumm (1991).

—a; is plotted in figure 4.3. It matches the calculation of Thumm (1991) and
LST fairly well demonstrating that the DNS-code is capable of simulating
the growth of instability waves in a supersonic boundary layer.
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Figure 4.3 Comparison of amplification rates for case Al of Thumm (1991).

4.2 Supersonic Flow at Mach 4.8

Case C of Eissler (1995) simulates a flow under atmospheric conditions with
constant wall-temperature. The computational parameters are summarized
in appendix C, table C.1. To keep the wall-temperature constant, the wall
has to be “cooled,” thus stabilizing the first mode and, at the same time,
destabilizing the higher modes (Mack, 1969). Indeed, the second mode for
the chosen frequency of F' = 10 x 1075 is the most unstable as can be seen
in the stability diagram of figure 4.4.
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Figure 4.4 Linear stability diagram for Ma = 4.8, the dashed straight line
denotes case C of Eissler (1995).
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Figure 4.5 Distributions of amplitude (left) and phase (right) for v’ and 77;
data from Eissler (1995,top) and current investigation (bottom).

Eissler (1995) chose this case to show that computations with a thermally
perfect gas are not worth the additional computational cost in comparison
to computing with a calorically perfect gas. The velocity field is practically
identical while the temperature distribution of the computation with a ther-
mally perfect gas ranges slightly above the one with the calorically perfect
gas (see figure 4.5). Since thermodynamic aspects are not under investiga-
tion, the higher computational cost calculating with a thermally perfect gas
is not justified. For this reason, all further computations are carried out with
a calorically perfect gas.

Note that, with respect to stability considerations, this validation case is
calculated such that all disturbances in the streamwise and the spanwise
direction have the same frequency (fundamental resonance). The amplitude
and phase distribution of the velocity and temperature disturbances for the
2D and first 3D mode shown in figure 4.5 agree well. The slightly higher
temperature amplitude in the baseflow disturbance, T'(1,0), is likely due to
convergence problems of Eissler (1995).

The fact that the amplitudes employed by Eissler (1995) and the location of
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Figure 4.6 Comparison of the downstream development of the maximum
amplitudes of pu’ for case C of Eissler (1995).

the disturbance slot are unknown, complicates the comparison of the down-
stream development of the maximum amplitudes. Nevertheless, the max-
imum pu’ amplitudes agree perfectly after the disturbance slot for the 2D
disturbance. The 3D disturbances show similar behavior, i.e., the wiggles
look alike and the fundamental resonance occurs at the same downstream
location (see figure 4.6). '

4.3 Incompressible Flow With Pressure-Gradient

4.3.1 Baseflow Simulation

As mentioned earlier, a Falkner~Skan similarity solution serves as initial con-
dition for the generation of the baseflow. This initial condition has a Hartree
parameter of Sy = —0.181 because, during the convergence of the baseflow,
the shape-factor obtained from the DNS drifts to the theoretical value asso-
ciated with By = —0.18. This is due to the domain height used for the DNS
which is twice as high as the domain height of the simulations of Kloker
(1993). The pressure distribution of the initial condition is kept constant
at the free-stream. The flow properties for case ICVALFR are specified in
appendix C, table C.2. The computational domain starts at z = 1.585 and
ends at z = 5.844. The converged baseflow and the Falkner-Skan solution
are plotted in Figure 4.7 and 4.8.

Figure 4.7 shows the u-velocity over n. The u-velocity is normalized by its |

free-stream value and 7 is calculated employing equation (3.13). Since this
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Figure 4.7 Comparison between Falkner-Skan solution and the baseflow ob-
tained from DNS. The u-velocity profile is plotted over the similarity variable
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Figure 4.8 Comparison between Falkner-Skan solution and the baseflow ob-
tained from DNS. Shown is the u-velocity at the free-stream over z.

profile is a similarity solution it does not change in the downstream direction.
In Figure 4.8 the distribution of the edge velocity U, over z is plotted.
The Falkner-Skan values are calculated using equation (3.15). The base-
flow matches the theoretical values of the Falkner-Skan solution except for
a slight shift which is due to the initial condition. However, it is very im-
portant to compare more than only these variables to find out whether the
same baseflow is predicted as by Kloker (1993). A very significant quantity is




the shape-factor His, which is defined as the ratio between the displacement
thickness 6, and the momentum thickness d,, thus,

Hyp=—. 4.1)
The displacement thickness of an incompressible flow is given by the equation

6= /o (- 7). (4.2)

It accounts for the growth of the boundary layer and defines the displacement
of the potential flow at the free-stream by the value §;. The equation for the
momentum thickness has the form

* u U
6;:/ —(1— =)dy. ‘ 43
A Ue( TR (4.3)
Since the flow near the wall experiences friction, it loses momentum which
is captured by the momentum thickness. The ratio of these quantities is a
constant for a laminar flow which possesses a similarity characteristic. The
reason for this fact is the similarity characteristic of the flow. The shape-
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Figure 4.9 Shape-factor of the Navier-Stokes baseflow and the theoretical
value of the similarity solution with B = —0.18.

factor obtained from the DNS (figure 4.9) matches the theoretical value for a
flow with By = —0.18 between z = 2.2 and z = 4.2. The disturbance slot for
the unsteady simulation with controlled forcing is located between z = 2.082
and z = 2.293. For this reason, the results of the unsteady calculation with
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forcing are only compared to the results of Kloker (1993) downstream of
2 = 2.2. Downstream of z = 4.2, the 2D wave and the 3D wave start to
interact with each other nonlinearly. The resolution of the simulation is too
coarse to reproduce the correct physics for this stage. For this reason, it is
not attempted to match Kloker’s curves obtained from the high resolution
simulation (case G) downstream of z = 4.2. _
Before the results of the forced flow simulation are discussed, attention is
being devoted to the Hartree parameter By. The initial condition has a
constant Hartree parameter. It is of interest to see if this value is conserved
in the DNS calculation. Sz can be computed in a post-processing step with
its compressible definition. A program that reads in the data of the converged
baseflow was written and tested with the previously described baseflow. The
definition of By is : :
26 dU(z)

Uua) dE (44)

Bu =

with
£(z) = / U (2)pe (@) e(z)der (4.5)

For incompressible flows with constant viscosity, u. and p. are independent of
z. Equation (4.5) is part of the Levy-Lee transformation (c.f. Schlichting &
Gersten, 2000) which can be used with equation (4.4) to derive a self-similar
compressible boundary layer with streamwise pressure gradient.

Since the inflow of the computational domain (see figure 3.1) is shifted by zo
from the leading edge of the flat plate, ¢ has to be calculated with

£@) = / “Ue(2)pe(@)pel)d + &, (46)

where

b = / " Uu2)pe (@) ()i (47)

In most cases, the distribution of U(z), p.(z) and pe(z) are not known
upstream of the computational domain. That is the reason why equation
(4.4) is easier to apply. If the Hartree parameter is given at the inflow, &g
has the value

_ BRUE
o= Yok (4.8)
dé
with dUu  dUird
;n _ én_x
¢ dz d¢ (49)
and
dz 1

(4.10)

& VR
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For F3 equal to zero, dU" /dz is also zero. For this case, equation (4.7) leads
to ‘

éo =Zp. (411)
Figure 4.10 shows the result of the previous mentioned post-processing tool.

The Hartree parameter of the DNS agrees very well with the theoret:cal value
of the initial condition.

~0.170
— B,=-0.18 {Falkner Skan)
#*[CVALFR (IC: B,=-0.181)
-0.175
Bu  _0.s0
~0.185
-0.190 4 4 L 4
1.6 24 32 4.0 4.8

X

Figure 4.10 Hartree parameter distribution over z for the baseflow obtained
from DNS.

4.3.2 Forced Flow Simulation

As comparison, a calculation is chosen in which Kloker (1993) simulated
aligned A-vortices generated due to a strong pressure gradient. This physi-
cal process which creates aligned A-vortices is called fundamental resonance.
Three Tollmien—Schlichting waves, one 2D and two 3D, interact which each
other. When the 2D Tollmien-Schlichting wave reaches large amplitudes, it
experiences a 3D deformation which is caused by the 3D waves. According to
linear theory, 2D waves are more amplified than 3D waves for subsonic flows.
However, when the 2D wave has a large amplitude, energy is being trans-
ferred to the 3D waves and their amplification rate changes significantly. The
amplitude of the 2D wave saturates and the 3D waves can reach amplitudes
of the order of the amplitude of the 2D wave.

The forced flow calculation of ICVALFR is conducted with almost the same
computational setup as Kloker (1993) used for his simulation. Disturbances
with the angular frequency 3 = 10.8 are introduced into the domain between
z = 2.082 and z = 2.293. One streamwise wavelength )\, contains 25 points
and the domain height is about four boundary layer thicknesses high (Kloker
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used only two boundary layer thicknesses). The computational parameters
are summarized in appendix C, table C.2. First, 2D calculations, where only

° , r . . -1 —
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Figure 4.11 Amplitude distribution of the u-velocity versus z for the 3D
calculation with APG according to Kloker (1993): 2D (left) and 3D (right).

the 2D Tollmien—-Schlichting waves were exited, were performed to determine
the correct domain height. The results of these simulations can be compared
to Kloker’s 3D simulation since the development of the 2D wave for small
amplitudes behaves according to linear stability theory.

Figure 4.11 (left) illustrates the influence of the domain height on the am-
plitude distribution of the 2D wave. The calculation with four boundary
layer thicknesses as domain height can reproduce Kloker’s data. The results
of the 3D calculation match Kloker’s data as well. The amplitude distribu-
tion of the 3D Tollmien—Schlichting wave shown in figure 4.11 (right) attains
the same amplification as the 3D wave in Kloker’s simulation for the linear
stage. At z = 4.0 the onset of the fundamental resonance can be observed.
Therefore, the slope of the amplitude distribution of the 3D wave deviates
from the slope predicted by linear stability theory. At z = 4.25, ICVALFR
starts to deviate significantly from Kloker’s values. This is due to the buffer
domain which starts at z = 4.5.

4.4 Linear Stability Theory With Pressure Gradient

The linear stability solver of Mack is a very powerful tool with many options
to compute the linear stability behavior of different flow types. It contains
an additional tool that can generate the similarity solution for a compressible
flow over a flat plate without a pressure gradient. The output of this tool is
then read into the solver and the complex wavenumber for a specified local




Reynolds number, frequency and wave angle is calculated from this initial
guess. Although the similarity solution of a compressible boundary layer
has a different definition of the similarity variable 5 than the incompressible
version, Mack still used the incompressible definition to transform the linear
stability equations into the 7 coordinate system (c.f. Thumm, 1991) with

=Yp : '
n= sz. (4.12)

We demonstrated before, that for Mach 3, this procedure is a very good
approximation.

Since the global Reynolds number of Re = 100, 000 is fixed in the stability
solver, Mack scaled the complex wavenumber by the factor R,/Re to be
independent of the Reynolds number

Ot;mmk = ar%ga a;{naCk = ai_:z—: . (4’13)

For comparison with the DNS data, the complex wavenumber has to be
rescaled by the Reynolds number which is used in the DNS simulation, i.e.,

pNs _ meck BEPYS  pys — mack RePNS (4.14)

r =% DNS » % @; DNS
R R7

(87

Flow properties: || Initial values:

Ma |3 R, | 280

T |103.6K ||F |6.0x10°5
Re 1578102 || o; | 3.490 x 107
Wall | adiabatic || o, | 2.712 x 1072

Table 4.1 Physical properties of the experiments (Brown, 2002) and the
initial values for the 2D linear stability analysis.

How can a stability analysis with pressure gradient be performed without
having any corresponding similarity solution? The solution for that problem
can be found using the DNS data. The DNS calculations provide a converged
baseflow with APG. This data must be transformed into the format which is
read into the stability solver. A program was written in order to retrieve the
necessary information from the DNS data at specified streamwise locations
and to create the input data for the stability solver. Since, for this case, 7
(according to equation 4.12) is not a similarity variable, the linear stability
analysis can only be performed locally. For every streamwise location a new
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input profile must be generated. As initial guess, the complex wavenumber
of a previous stability analysis of a similarity profile with the same physical
properties (except APG) is used. To validate this procedure, a 2D stability
analysis with the physical properties of the experiments by Graziosi & Brown
(2002) and without APG was performed (see table 4.1). The investigated
profiles were the similarity solution of Mack’s similarity solver and the input
profiles created from the corresponding DNS data by the procedure discussed
above. In table 4.1 the flow properties, disturbance frequency, start location
and the initial eigenvalues are listed. The stability analysis started at R, =
280 and ended at R, = 880. The initial eigenvalues are the local solution for
position R, = 280.
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Figure 4.12 Eigenfunctions of u-velocity (top left), v-velocity (top right)
and pressure (bottom left) disturbances at R, = 280 and amplification rate
a; over R, (bottom right) from stability calculations using the similarity
solution and the DNS profiles.

Figure 4.12 shows the results obtained using this stability analysis. The
eigenfunctions of u, v and p at position R, = 280 and t the amplification
rate o; over R, are plotted. Like for every numerical simulation, the optimal
domain height of the integration domain and the largest spatial stepsize
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that still gives the correct physical result had to be determined. Therefore,
for the DNS baseflow profile, which was read into the stability solver, a
resolution and domain height study was carried out. It was observed that for
a large number of points in the boundary layer in the wall-normal direction
(more than 200 points) Mack’s stability solver could not produce a correct
amplification rate c; anymore. This fact marks a limit for all DNS based
linear stability investigations for the present research and it could be the
explanation for the difference of approximately 7.5% between the growth
rate using the similarity solution as input profile and the growth rate using
the DNS data as an input shown in figure 4.12. The difference of around 7.5%
of the growth rate is determined at the location of the maximum growth rate
using the similarity solution as input and is based on this maximum value.
However, the difference could also be caused by the slight discrepancy in the
profiles of the similarity solution and the DNS data.

4.5 Compressible Flow With Adverse Pressure-Gradient
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Figure 4.13 Linear stability diagrams for Ma = 3, T., = 103.6K, adiabatic
wall: ¥ = 0° (left) and ¥ ~ 65° (right). The region outside of the contours
represents the region of damped frequencies.

In this section two DNS calculations, one with and one without APG, are
presented. The flow properties are listed in table 4.1. A more detailed table
which summarizes the computational parameters for the DNS can be found
in appendix C, table C.2. Both calculations were performed with small dis-
turbance amplitudes, so that they can be compared to LST. 3D disturbances
were excited in the disturbance slot. This choice was motivated by the sta-
bility properties of the flow. The 2D linear stability diagram is shown in
figure 4.13 (left). Two instability modes are present, a viscous (Tollmien—
Schlichting type) and a second (inviscid or Mack) mode. The latter is more
amplified. It is very difficult to excite only one particular instability mode
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without exciting the other one. Preliminary 2D DNS revealed that both in-
stability modes were always present in the flow field and that the Mack mode,
which was not of interest, was only weakly damped. In contrast, the 3D lin-
ear stability diagram (figure 4.13, right) contains only the first (TS-type)
mode. This simplifies the post-processing of the computational data since
it is not necessary to decompose the flow field into the different instability
modes. The disturbance waves are introduced at a wave angle of ¥ ~ 65°.
This angle is chosen because it represents the angle of the most amplified
wave (Mack, 1984). For one frequency the spanwise wavenumber is a con-
stant and the streamwise wavenumber is a function of z. For this reason, the
wave angle varies and cannot have the value of ¥ = 65° in thé whole com-
putational domain. The spanwise wavenumber which is used for the linear
stability analysis is defined by the following equation (Eissler, 1995)

v=dFRe, (4.15)

where d is a constant that defines in which range the wave angle is located.
In Mack’s stability solver the streamwise wavenumber « is normalized by the

ratio R,/Re (see section 4.4). This scaling is also applied to the spanwise -

wavenumber. Therefore, equation (4.16) can be modified to
Y™k = dF R, . (4.16)

Table 4.2 lists the values of d for both linear stability analyses. d is chosen in
a way such, that ¥ is equal to 65° at the R, locations where the amplitude
distributions of the DNS and the eigenfunction of the LST are compared to
each other.

No pressure gradient: || Pressure gradient: |
d 3.0 m | 3.5 |

Table 4.2 Constant d for the two different simulations.

4.5.1 Simulation Without Pressure Gradient

Figure 4.13 (right) shows the stability diagram for the simulation without any
pressure gradient. The domain starts at R, = 250 and ends at R, = 1893.
Disturbances of frequency F = 3 x 107° are introduced into the domain
between R, = 594 and R, = 655. The buffer domain starts at R, = 1722.
The computational domain is very long since at the location R, = 1400,
where the DNS is compared to the LST data, influences of the disturbance
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slot and non-parallel effects are required to be weak. The resolution in the
z- and y-directions is chosen such that one streamwise wavelength ), is
resolved by eleven points and at the end of the domain, 100 points are within
the boundary layer in the wall-normal direction. The domain height is two
boundary layer thicknesses at the outflow. This domain height is also used
by Thumm (1991) for his linear stability investigations.
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Figure 4.14 Amplitude distribution of the u-velocity (top left) v-velocity
(top right) and pressure (bottom left) at R, = 1400 and amplification rate
a; over R, for ¥ =~ 65° (bottom right).

In figure 4.14, the amplitude distributions obtained by the DNS are compared
to the eigenfunctions of the LST. In the plot for the u-velocity (top left), it
is visible that for a 3D wave the eigenfunction has a second maximum close
to the wall. Next to the location of the second phase shift, the amplitude
distribution from the DNS varies slightly from the LST. This discrepancy
was also observed by Thumm (1991). The v-velocity from the DNS shows
a large difference to the LST results for 4 < 7 < 6. The deviation becomes
smaller when the DNS baseflow is used for the linear stability analysis (see
section 4.5.2). In figure 4.14 (bottom right) the amplification rate o; over
R, is plotted. It is calculated from the maximum value of the u-velocity
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perturbations in y. The value based on the LST deviates by 27% from the
DNS solution and the deviation increases to infinity for «”5 equal to zero.
This means that the DNS predicts a higher amplification rate than LST.
Thumm (1991) concluded that the non-parallel effects, which are caused by
the growth of the boundary layer, are responsible for this behavior. But he
did not present any proof for this statement.
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Figure 4.15 Amplification rate a; of the resolution study over R, for ¥ =~
60° (left) and Fourier-transformed u-velocity in time (right, the amplitude
distribution between points 100 — —150 in z and points 1 — —80 in y is
plotted).

To validate if the DNS values are correct a resolution study was carried out.
The results are shown in figure 4.15 (left). All cases (with different resolution
in the z- and y-directions, larger domain height, smaller disturbance ampli-
tude and different inflow buffer domains) reproduced identical results, thus,
indicating a well-resolved simulation. The saw-toothed shape of the curves
in figure 4.15 is an artifact of the post-processing and can be eliminated by
interpolating the locations of the u-velocity maxima. Figure 4.15 (right) il-
lustrates that the original DNS data after the Fourier-transformation in time
has indeed a very smooth distribution.

4.5.2 Simulation With Adverse Pressure Gradient

Figure 4.16 shows the linear stability diagram for the compressible validation
case with APG. The dashed-dotted line represents the neutral curve of figure
4.13 (right). Only the region between R, = 1000 and R, = 1600 includes
an APG. For the case with APG, the neutral curve is shifted to higher fre-
quencies and the highest amplification rate o; is approximately three times
larger than for the case with Sy = 0. By is not a constant and it is plotted
in figure 4.17. The value of By is calculated with the post-processing tool
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Figure 4.16 Stability diagram for Ma = 3, T, = 103.6 K, adiabatic wall and
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Figure 4.17 By for compressible validation case with APG (case CVALPG).

described in section 4.3.1. The pressure distribution of the DNS calculation
is plotted in figure 4.18 (left). In § 3.4.4, it was already discussed how a
converged baseflow with adverse pressure-gradient is obtained. A pressure
distribution is introduced on a baseflow through the upper boundary. This
baseflow is converged out and then the regions which are not needed are cut
off. Figure 4.18 (right) shows the original pressure distribution.

The computational domain of the forced flow calculation starts at R, = 899
and ends at R, = 1822. Disturbance waves with the angular frequency of
F=3x10"° are introduced through the disturbance slot located between
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Figure 4.18 Pressure distribution of the DNS calculation (case CVALPG):
after (left) and before (right) the computational domain is cut; only every
fourth point is shown for clarity.

R, = 1048 and R, = 1083. The buffer domain starts at R, = 1640. The
resolution in z and y is the same as for the calculation without APG (case
CVALNP). Therefore, only ten points resolve one streamwise wavelength A,
and 80 points in the wall-normal direction are within the boundary layer
at the end of the computational domain. Compared to the case without
pressure gradient (case CVALNP), the boundary layer for case CVALPG is
thinner. Incompressible flow behaves very differently. An APG always thick-
ens an incompressible boundary layer in order to conserve its mass flux. For
compressible flows, an APG causes the density to increase and, consequently,
produces a larger mass flux in the boundary layer without the need to thicken
it. If the increase in density is strong enough, the boundary layer can even
become thinner. ‘

In figure 4.19, the amplitude distributions from the DNS are compared to
the eigenfunctions obtained using LST. The u-velocity (figure 4.19, top left)
matches the theoretical values pretty well. The discrepancy between the
DNS and the LST results for the v-velocity at n = 5 is much smaller than
for case CVALNP. This corroborates the previous statement that it makes
a difference whether the DNS baseflow or the similarity solution is used for
the LST analysis. For higher values of 7, the amplitude distribution of the
DNS deviates from the theory. After a domain height study it was concluded
that this deviation is caused by the upper boundary condition of the stability
solver. With increasing domain height this difference decreases. In figure 4.19
(bottom right) the amplification rate o; versus R, is plotted. Like for case
CVALNP, the waves predicted by the LST calculations are amplified about
25% less than the waves obtained by employing DNS.

Figure 4.20 shows the results of the domain height study for the stability
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Figure 4.19 Amplitude distribution of the u-velocity (top left), v-velocity

(top right) and pressure (bottom left) at R, = 1510 and amplification rate’
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Figure 4.20 Amplification rate o; versus R,. Domain height study for the
linear stability solver of Mack (¥ ~ 61°).

solver of Mack. The graph indicates that the domain height has a significant
impact on the amplification rate o;. With increasing domain height, o;
converges to the value that is obtained when the domain height of the stablhty
solver is chosen to be two boundary layer thicknesses.
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5. PRINCETON EXPERIMENTS

At Princeton University, Professor Brown and co-workers performed an ex-
perimental study of stability, receptivity and transition of a flat plate bound-
ary layer at Mach 3. For a detailed description see Graziosi (1999) and
Graziosi & Brown (2002). In the following, only a short summary of their
work is presented.
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Figure 5.1 Quiet region of LVTG windtunnel (reproduced from Graziosi &
Brown, 2002). : '

The Low Turbulence Variable Geometry (LTVG) wind tunnel with a turbu-
lence rate of 0.11% to 0.39% provides a 28.5” long and 8” wide flat-plate in
the test section. However, the quiet region, i.e., the region before a shock
wave is reflected at a tunnel wall and hits the boundary layer again, is about
9.5” long and, consequently, reaches only a maximum local Reynolds number
of R, = 725 (see figure 5.1).

Mean flow investigations were performed at a stagnation pressure of

ps = dpsia

whereas, due to the lower turbulence level, the transition investigation was
carried out at a stagnation pressure of

ps = 4psia.

For a summary of the operating conditions see table 5.1.

Hot wire measurements were performed at five different downstream locations
between R, = 400 and R, = 800 along the centerline of the plate. The data
acquisition locations were chosen from the location of the critical Reynolds
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Do [psia) 4.0 4.2 5.0
pUs [2£] 15.8 16.5 19.7
U . [T 610.5 610.5 610.5
Re/m [[] ] 2.18x10° | 2.29 x 10° | 2.72 x 10¢
<pu> [pUso (%) 0.11 0.16 0.39

Table 5.1 Operating condition of LTVG and measuered free-stream turbu-
lence level.

nurhber on downstream. Intensive calibration and mean flow surveys assured
a relatively small error in the measured data.

Natural disturbances coming from the upper edges of the wind tunnel pen-
etrated the boundary layer and excited disturbances. For recent studies a
loudspeaker was located in the free-stream to introduce controlled distur-
bances. For both cases, free-stream turbulence was present influencing the
measurements. erquencm under investigation were:

o F =14 x107°-begin of the instability region (branch I),
e F =5 x 107°-region of maximum amplification of disturbances,
e F' =81 x 107°~end of the instability region (branch II),

i.e. 3,000 Hz, 10,500 Hz and 17,000 Hz, respectively. All cases under inves-
tigation are illustrated in the linear stability diagram of figure 5.2.
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Figure 5.2 LST-diagram with investigated cases (reproduced from Graziosi,
1999).
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6. RESULTS AND DISCUSSION

6.1 Baseflow Simulations

All computations are carried out on a grid according to the results of the
grid convergence study in appendix B.1, i.e., the domain length is twelve X,
of the corresponding TS-wave, the domain height is nine doyts10 Wwith an
equidistant grid for the first two boundary layer thicknesses and s stretched
grid above. The disturbance slot is located one wavelength downstream of
the inflow boundary and is 1/2 ), long (exemptions are clearly stated). The
resolution is 32 points per A; and ten points per &, oy

6.1.1 Comparison With Similarity Solution

The difference between the similarity solution and the'baseflow, i.e., the
steady solution to the Navier-Stokes, equations should be small. This con-
jecture is corroborated in the following. First, the boundary layer thickness
is compared in table 6.1, where ¢* denotes the dimensional boundary layer
thickness. As reference case serves the boundary layer thickness after von
Mises (c.f. Schlichting & Gersten, 2000) for a laminar, zero pressure—gradlent
incompressible flat-plate boundary layer:

vz*

*
uoo

5 =5 (6.1)

&* [1073m] || von Mises | Navier—Stokes | similarity solution |
R, =467 1.0711 1.99097 1.962
R, =636 1.4872 2.68348 2.6546
R, =769 1.76371 3.34714 3.2029
R, =864 | 1.981655 3.6645 3.6357

Table 6.1 Boundary layer thickness comparison.

Table 6.1 shows that the estimate according to von Mises is only a rough
guess for compressible flows, while the small difference between the similarity
solution and the Navier-Stokes solution is most likely due to the presence
of a small favorable pressure-gradient (see below). The maximum deviation
within the flow field is about 3% in the u-velocity. In figure 6.1, the similarity
solution and the baseflow, normalized with the value at the edge of the
boundary layer, are compared. The increased boundary layer thickness, as
already shown in table 6.1, can be observed for the u-velocity. While the
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Figure 6.1 Comparison of Navier-Stokes and similarity solution: wu-velocity
(top left), temperature (top right), density (bottom left) and the pressure dis-
tribution of the Navier-Stokes solution in the streamwise direction (bottom
right).

density p shows only a minor deviation, the temperature at the wall is larger
for the Navier-Stokes baseflow than for the similarity solution. However, the
difference at the wall is only 6K. This discrepancy is considered to have an
insignificant impact on the stability characteristics of the low. Nevertheless,
the difference in the density and temperature results in a favorable pressure
gradient in the streamwise direction because the equation of state governing
the pressure still has to be valid. Figure 6.1 (bottom right) shows a typical
pressure distribution in streamwise direction while the pressure in the y-
direction is constant.

By scaling data at three different downstream locations using the similarity -

variable 7, figure 6.2 shows that all three profiles perfectly match. This
demonstrates that the flow is indeed self-similar. Matching the pressure
gradient in the region of interest with a Falkner-Skan similarity velocity
profile led to a Hartree-parameter of 4.2 x 10~ which is close enough to zero
to assume a zero pressure-gradient flat-plate boundary layer flow. However,
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Figure 6.2 Navier—Stokes solution profiles in similarity variable 7 for different
downstream locations.

using profiles of the the Navier—Stokes solution as a baseflow for a LST
analysis results in a smaller unstable region due to the favorable pressure
gradient (see figure 6.3). One could, therefore, conclude that the Navier-
Stokes baseflow should be more stable with respect to disturbances than the

similarity solution. However, a later discussion will show that this statement

is not generally true (see § 6.2.4).
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Figure 6.3 LST diagram of similarity and Navier-Stokes solution for ¥ = 60°.
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Figure 6.4 Comparison of computation and experiment at different down-
stream locations.

6.1.2 Comparison with Experiments

In the experiments, baseflow investigation at a stagnation pressure of 5 psia
are performed. Hot wire measurements of the mass flux at different down-
stream locations and the computed streamwise momentum are compared in
figure 6.4. The very good agreement also confirms that the baseflow simu-
lation captures the mean flow properties at Mach 3 correctly. The slightly
different profiles farther downstream stem from the reflected shock wave (see
figure 5.1). In the experiments, the pressure distribution (figure 6.5) shows
only small pressure deviations in the streamwise direction, but, because of
the uncertainty in the experimental measurements, an overall (favorable)
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pressure-gradient could still be present, explaining the good agreement with
the computations.
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Figure 6.5 Pressure distribution along the middle axis of the plate (repro-
duced from Graziosi, 1999). :

6.2 Linear Stability Behavior

6.2.1 Disturbance Frequency F = 1.4 x 107°

From a computational point of view, the disturbance frequency of F = 1.4 X
107 (f* = 3,000Hz) is problematic because a very large TS-wavelength
of A\; = 0.127m is linked to this set up. Because of the space needed for
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Figure 6.6 LST stability diagram for ¥ = 60° and ¥ = 0°.




disturbance generation (see § 3.6), the inflow boundary approaches the virtual
origin (2o — 0) in figure 3.1 and a very fine computational grid has to be
used in order to maintain numerical stability. To reduce the computational
cost, computations on an immediately stretched grid were carried out and
the forcing slot was located only 15 grid points from the inflow boundary
with an extremely small width of only five grid points.. Even using this
disturbance generation configuration, there is only half a wavelength space
in the downstream direction before the disturbance wave enters the unstable
region (branch I). For all other computational parameters, see appendix C,
table C.3. )

Comparison with Experiments

To check, if the right disturbances are introduced, the TS-wavelength ob-
tained in the computations is compared to the experimental data in table 6.2.
The result is off by a single Az indicating that the correct TS-wave is cap-
tured.

Az
computation [m] || 0.127
experiments [m] |l 0.122

Table 6.2 Wavelength comparison of computation with experiments for F =
1.4 x 1075, :

-
(=]

NA,
a® - n w » " o ~ o« o

Figure 6.7 Amplitude distribution comparison of experiment with computa-
tion for F' = 1.4 x 107° (f* = 3,000Hz).

In figure 6.7, the amplitude distribution in the streamwise direction is plot-
ted. The amplitude of the introduced disturbance initially decreases rapidly.
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Therefore, the flow is not fully developed causing the wiggles in the ampli-
tude distribution. So it is questionable if the physically right amplitude at
R; = 440 is used for normalization. In both cases, the amplitude grows at
about R, = 500 which is earlier than predicted by LST. Farther downstream,
the computation shows a smaller amplitude than the experiments, probably
caused by the normalization. Nevertheless, the data match reasonably well.

To-02

1000 +
3
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104

«0.003
! 300 500 00 00 1100 1300 1500 1700 =0.004
R, T 400 500 600 700 800 00 1000 1100 1200

Figure 6.8 Maximum v’-amplitude (left) and amplification rate (right) over ‘

R, for F =1.4x 1075,

Comparison with LST

The region of interest is too close to the disturbance slot (see figure 6.6).
Due to the reasons mentioned above, this fact cannot be changed easily. As
a consequence, the TS—wave is still developing which causes the waviness
of the amplitude and amplification rate plots in figure 6.8. Instead of the
amplification rate, the maximum «’-amplitude is therefore used to give some
indication of the flow instability. The maximum amplitude in figure 6.8 shows
a growing amplitude from R, = 500 which coincides with the experiments
but is earlier than LST (see figure 6.6). Due to the lack of data farther
upstream, it is inconclusive what causes this effect. From R, = 700 on, the
logarithmic plot (figure 6.8) shows linear behavior, i.e. exponential growth
of the disturbance amplitude, which is consistent with LST.

In figure 6.9, the eigenfunctions of LST do not differ too much-their shape
stays the same. The discrepancies stem mainly from the different instabil-
ity modes present during wave development. The phase distributions show
an earlier phase shift for the similarity solution than for the Navier-Stokes
solution because of the thicker boundary layer of the latter. Comparing the
eigenfunctions with the amplitude distribution from the DNS computation,
the second maximum at 7 = 10 is considerably larger, while for p’ and T”, the
first maximum is smaller. The shape of the eigenfunctions of the computa-
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tion is not similar to the two LST-eigenfunctions, because at R, = 700, the
disturbances have only travelled one wavelength downstream so that the first
maximum has not yet fully developed. The absolute value of the phase distri-
bution is different but the phase shifts are consistent with the eigenfunctions.
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Figure 6.9 Comparison of amplitude (left) and phase (right) distribution of
the computation to LST based on the similarity and the Navier-Stokes solu-

tion; ahown are u-velocity (top), density (center) and temperature (bottom);
F=14x107% R, ="700.




6.2.2 Disturbance Frequency F = 5.0 x 10~

This case was chosen due to its proximity to the region of maximum ampli-
fication rate. For computational parameters, see appendix C, table C.4.

Comparison with Experiments

Cdfhparison of the TS—wavelengths gives confidence that the same distur-
bances as in the experiments are introduced (see table 6.3).

Az
computation [m] |{ 0.0376
| experiments {m] | 0.0376

Table 6.3 Wavelength comparison of computation with experiments for F =
5x 1075,

In figure 6.10, the DNS results are compared with the experimental data.
Shown are the amplitude distribution for different downstream locations and
the amplification rate at R, = 500 for different frequencies. The simulations
and the experiments match fairly well at lower R,. The larger amplitude for
the computation farther downstream suggests that non-linearities are present
in the experiments—probably because of the reflected shockwave at R, ~ 700

(see § 5).
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Figure 6.10 Comparison of experiment with computation for F = 5 x 10~5:
amplitude distribution over R, (left) and amplification rate at R, = 500 for
different frequencies.
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Figure 6.11 Amplification rate comparison of computations with results from
LST for F =5 x 107° (f* = 10, 500Hz).

Comparison with LST

The computations and the experimental data both show a larger amplifica-
tion rate than LST, where the amplification rate of the computations is even
larger than in the experiments (see figure 6.10, right). In figure 6.11, the
maximum amplification rate is significantly larger compared to LST. Farther
downstream, the amplification rate curve approaches the LST-curve which
can also be seen in figure 6.11. As shown in figure 6.12 the amplitude distri-
butions of the computation are wider compared to the LST-eigenfunctions,
both with similarity and Navier-Stokes baseflows. The first maximum of the
u-amplitude distribution of the computation is not as large, but all eigen-
functions match in the free-stream (n > 10). The phase distributions are
similar with the phase shifts consistent to the eigenfunctions.

6.2.3 Disturbance Frequency F = 8.1 x 1075

In this case, the branch II of the stability diagram for a wave angle ¥ = 60°
is crossed at R, = 700 with F' = 8.1 x 107° (see figure 6.6). For a complete
list of computational parameters, see appendix C.

| |
computation {m| || 0.0241
experiments [m] | 0.0249

Table 6.4 Wavelength comparison of computation with experiments at F =
8.1 x 1075,
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Figure 6.12 Comparison of amplitude (left) and phase (right) distribution of
the computation to LST based on the similarity and the Navier-Stokes solu-
tion; ahown are u-velocity (top), density (center) and temperature (bottom);

F=5x10"% R, = 700.

Comparison with Experiments

As above, the TS-wavelength (table 6.4) is used to confirm the generation
of the same kind of disturbances as in the experiments. The good agreement
verifies the capturing of the right disturbance frequency and assures that no
sound-wave or numerical noise is amplified to the order of the wave under




R

Figure 6.13 Amplitude distribution comparison of experiment with compu-
tation for F = 8.1 x 107° (f* = 17,000Hz).

investigation. The amplification rate in figure 6.10 (right) for the compu-
tations is about 10% larger than Graziosi (1999) found in his experiments.
Taking the uncertainty of supersonic experiments into account, the compu-
tations match the experiments reasonably well. In figure 6.13, the amplitude
distribution in downstream direction is shown. The overall agreement is re-
markable. Farther downstream, the computation shows a higher amplitude
than the experiments. This could again be due to nonlinear interaction which
is avoided in the computation.
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Figure 6.14 Amplification rate comparison of «' and pu’ with LST for F =
8.1x 1075 (f* =17, 000Hz).
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Figure 6.15 Comparison of amplitude (left) and phase (right) distribution of
the computation to LST based on the similarity and the Navier-Stokes solu-

tion; ahown are u-velocity (top), density (center) and temperature (bottom);

F=81x10"% R, = 700.

Comparison with LST
Although only small disturbances of v’ are introduced, the larger amplifi-

cation rate and the shift of the instability region farther downstream are
significant (see figure 6.14). For detailed discussion see § 6.2.4. Looking
at the amplitude distribution in figure 6.15, the LST based on the similar-




ity solution overestimates the temperature and density amplitude, while the
eigenfunctions of the computations are closer to the eigenfunctions computed
with the Navier-Stokes solution. Because the differences between the base-
flows obtained using the similarity and Navier-Stokes solutions are small
(see § 6.1.1), it is unclear what causes the large deviation in the p’- and 7"-
eigenfunction of the LST similarity solution. The phase distribution of the
computation shows the same properties than the LST-phase distributions,
for both the similarity and the Navier-Stokes baseflow.

6.2.4 Non-Parallel Effects

The growth of the boundary-layer in the downstream direction causes a
change in the wavenumbers of the downstream traveling TS-waves. This
effect is not included in the investigations employing linear stability theory.
For LST, a “parallel flow assumption” is used which inherently assumes that
the baseflow cannot change in the downstream direction. In the following,
we will investigate how the growth of the boundary layer changes the region
of instability, i.e., whether it moves the start (branch I of the neutral curve
in a linear stability diagram) and the end (branch II) of the unstable region.

6.2.4.1 Investigation of Branch I |

In § 6.2.1, the simulation with frequency F = 1.4 x 10~° was carried out
such that the generated TS-wave crosses branch 1. However, due to the fact
that the space between the end of the disturbance slot and the beginning
of the unstable region is only A,/2 in downstream direction, the TS-wave
was not fully developed when entering the unstable region. Nevertheless,
the amplitude comparison of figure 6.8 suggests that an increased unstable
region for branch I may exist due to non-parallel effects of the compressible
boundary layer. This is corroborated by the experiments where the amplitude

_ growth is significant enough to exceed any error in the measurements.

6.2.4.2 Investigation of Branch II

To determine the increase of the unstable region near branch II due to non-
parallel effects, four frequencies are considered:

e F=5x1075 from R, = 700 to R, = 1450
e F=81x10"% from R, = 400 to R, = 1000
e F=1.5x%107% from R, = 100 to R, = 650
o F=2x1074 from R, = 100 to R, = 550
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For a detailed description of the two lower frequencies, see § 6.2.2 and § 6.2.3,
where the lowest frequency is shifted downstream to cross the neutral curve
at branch II. The two higher frequencies are chosen to investigate the non-
parallel effects on high-frequency disturbances. Detailed listings of used pa-
rameters can be found in appendix C.

In the incompressible case, the best criterion for the unstable region of the
stability diagram is the inner maximum of «' (Fasel & Konzelmann, 1990).
Here, the second maximum of a given parameter is chosen, because the sec-
ond maximum is much larger than the first maximum for the compressible
eigenfunction. In this study, different criteria are presented to determine
non-paralle] effects, but no conclusion is drawn on how non-parallel effects
are measured, i.e., how the downshift of the neutral point is related to non-
parallel effects. Generally, the following quantities are investigated:

e streamwise velocity «’
e wall-normal velocity v’
e density o

temperature T"

e pressure p’
e spanwise vorticity w,,
¢ disturbance mass flux in streamwise direction pu’

Independent of the frequency, the parameters v/, g/, 7" and pu’ are all ampli-
fied in the same manner while v/, p’ and w/, show different behavior. To ensure
that the downshift is not governed by the influence of a pressure-gradient in
the simulation, the neutral curve of the LST based on the Navier-Stokes
solution is also computed. The Navier—Stokes solution has a smaller unsta-
ble region compared to the LST governed by the similarity solution which
is consistent with a favorable pressure-gradient. This results in an even far-
ther downshift of the neutral point which seems to be accurate since the
computation captures the experimental results very well.

The long-wavelength oscillations in g’ indicate that sound waves overlay the
amplification rate. These oscillations also influence pu’ and 7. The small os-
cillations are introduced by the post-processing. Therefore, the amplification
rates are averaged to obtain the neutral point.

65




Frequency F =5 x 1075

The lowest frequency is closest to the neutral curve computed with LST
leading to the conclusion that the non-paralle] effects are less pronounced.
Looking at «', ¢/, T' and pu’ the neutral point in figure 6.16 (left) is shifted
from R, = 1220 to R, = 1270, that is a difference of AR, = 50 or 1.5 ),
compared to the LST results employing the similarity solution as baseflow.
Compared to the LST using the Navier-Stokes baseflow, the shift is from
R, = 1025 to R, = 1270 or 6.8 ),. The v-amplification rate and the
LST similarity solution are the same so that non-parallel effects could not
be determined, but the downshift compared to the LST with Navier-Stokes
baseflow is from R, = 1025 to R, = 1220 (5.3 ;). The v'-amplification
rate also takes much longer before it is fully developed. Even worse is the
p’-amplification rate which gives the smallest difference to the LST with
Navier-Stokes baseflow, i.e., a downshift to R, = 1140 or a difference of
three A, (this point may still vary because of the late development).
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Figure 6.16 Amplification rate for different reference quantities; F = 5x10~5
(left) and F' = 8.1 x 1075 (right).

Frequency F = 8.1 x 1073

For the frequency of f* = 17,000Hz (see figure 6.16, right ), the instability
region is shifted about AR, = 105 (from R, = 700 to R, = 805) or 3
Az downstream if the u'-amplification rate and equivalent parameters are
compared to the LST similarity solution. Compared to the LST Navier—
Stokes solution, the shift is from R, = 600 to R, = 805 (5.3 Az)- Looking at
the v'-amplification rate, the shift is less than for the latter parameters, i.e.
the shift is about AR, = 50 and AR, = 150 compared to the LST similarity
solution and to the LST Navier-Stokes solution respectively. A relationship
between the development of the v’ and the w’-amplification rate is clearly
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visible-once the v'-amplification has developed, the vorticity amplification
rate is getting smaller until it is parallel to the other amplification rate curves.
The same mechanism can be seen for all frequencies under investigation,
although it is not this obvious. For the frequency of F = 8.1 x 1075, the w!-
amplification stays also different to the w/-amplification rate curve while for
the other frequencies it approaches the same values due to this mechanism.
The pressure is again less amplified than the LST similarity solution predicts
and has therefore the smallest downshift to R, = 655 (1.5 A ) compared to
the LST Navier-Stokes solution.

Frequency F = 1.5 x 10~*

Unfortunately, the second highest frequency shows some slight oscillations
around the neutral point so that no precise location can be specified (see
figure 6.17, left). Figure 6.17 (left) also shows that these oscillations are not
produced by a reflected expansion fan as experienced for the grid conver-
gence study in appendix B.1.1, since the oscillations appear with the same
severity at the same location independent of the domain height. It is more
likely that they are caused by a numerical error when the amplitude is close
to zero during the post-processing procedure. Computations at a lower fre-
quency do not show this behavior because of the higher amplification rate.
Nonetheless, the amplitude distribution over the flow field (see figure 6.17,
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Figure 6.17 Amplification rates for different domain heights (left) and am-
plitude distribution of u’ (right); F = 1.5 x 10~* (f* = 31, 250Hz).

right) is smooth so that the physical properties of the flow are captured cor-
rectly. The comparison to LST is done with a domain height of 20 boundary
layer thicknesses. Considering v’ and the equivalent parameters as criterion
to determine non-parallel effects, the region of the neutral point in figure 6.18
(left) lies therefore between R, = 465 and R, = 500 revealing an enormous
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shift downstream compared to R, = 350 from the LST similarity solution.
The maximum amplitude distribution leads to the conclusion that the neu-
tral point is considered to be at R, = 480 (see figure 6.19, left). The overall
shift is therefore AR, = 130 or 3 ),. The difference bétween the LST sim-
ilarity solution and LST Navier-Stokes solution is only AR, = 40 so that
the difference between the u’-amplification rate and the LST Navier-Stokes
solution is about AR, = 170 (4 I,). The v’-amplification rate is closer the
w'-amplification rate curve than for the lower frequencies leading to the con-
clusion that the non-parallel effects are stronger for v’ than for the smaller
frequencies. Considering v’ as criterion to determine non-parallel effects re-
sults in a downshift of AR, =90 (2 A;) or AR, = 130 (2.5 ),) for the com-
parison with the LST employing the similarity solution and Navier—Stokes
baseflow, respectively. The pressure amplification rate develops too late to
determine the neutral point, but because of the difference to the other ampli-
fication rates farther downstream, it is considered to give the best agreement
with the LST using the Navier-Stokes baseflow.
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Figure 6.18 Amplification rate for different reference quantities; F = 1.5 x
10™* (left) and F = 2 x 10~ (right).

Frequency F =2 x 10~*

Figure 6.18 (right) shows that for this frequency the Navier-Stokes solution is
already stable according to LST. Looking at the amplitude distribution of v’
in figure 6.19 (right), the neutral point is at about R, = 345. The resulting
shift of the neutral point downstream, as shown in figure 6.18 (right), is
about R, =~ 100 or 2.5 A, compared to the LST similarity solution where the
neutral point is at R, = 250. Because of the later development of the v’ and

p'-amplification rate no data to determine the neutral point can be extracted. -

Taking the w -amplification rate into account the the neutral point is slightly
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Figure 6.19 Maximum amplitude distribution of u; F = 1.5 x 104 (left)
and F =2 x 107 (right).

farther downstream, namely at R, = 360.

6.2.4.3 Summary of Observed Non-Parallel Effects

Non-paralle] effects are most likely present for the flat plate boundary layer
at Ma = 3. Because the experiments experience effects that agree qualita-
tively with the computations, it is unlikely that the downshift is caused by
a numerical effect. But the far downstream shift of the neutral point for «’,
o', T" and pu’ is not only governed by non-parallel effects. This tremendous
shift may be explained by an interaction of a higher mode which is for this
Reynolds and Mach number not yet unstable (otherwise it would be present
in the LST—diagram). Figure 6.6 shows an upcoming second mode for a 2D
disturbance.
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Figure 6.20 Verification of linear disturbance assumption.

Another reason could be the resolution in the spanwise direction so that,
although linear disturbances are introduced, the energy wants to shift to
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higher modes. To check that the introduced perturbations are small enough
and, consequently, the linearity assumption holds, the already small forcing
amplitude is reduced by a factor of 100 (see figure 6.20). The perfect align-
ment of the curves demonstrates that the disturbances behave linearly and
the comparison with LST is valid. Therefore, the spanwise resolution i is not
considered to influence the stability behavmr

The good agreement between the v’-amplification rate and the LST similarity
solution is remarkable leading to the conclusion that the other mechanism
influencing the stability behavior, whatever that mechanism is, has less in-
fluence on the v'-velocity. Nonetheless, the downshift compa,red to the LST
Navier-Stokes solution is remarkably large.
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Figure 6.21 Pressure eigenfunction at R, = 940.

Without proof, the p/-amplification rate compared to the LST with Navier—
Stokes baseflow is probably best suitable to determine non-parallel effects.
Mack categorizes the modes by the zero crossings of the pressure eigenfunc-
tion (Mack, 1984). Because no zero crossing is visible in the computations
(see figure 6.21), the pressure distribution is associated with the first mode,
i.e., the TS-mode. Therefore, it is less likely that higher modes are influencing
the amplification of the pressure dlsturbances
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Figure 6.22 Boundary layer growth and development of p’-wave over z.

This study shows that independent of the criterion, non-parallel effects are
much stronger than in the incompressible case (c.f. Fasel & Konzelmann,
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1990). To demonstrate that the result is still plausible, figure 6.22 shows the
boundary layer growth over the z-direction in comparison to the development
of the wall pressure disturbance wave. The fast growing boundary layer and,
consequently, the increasing v-velocity indicate that the assumption of a
locally parallel flow used in LST is not necessarily fulfilled for the current
investigation.

6.3 Nonlinear Resonances

6.3.1 Classical Fundamental Resonance
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Figure 6.23 Fundamental Breakdown. Amplitude distribution of wu-
perturbation versus downstream direction. Re = 10°, F = 5 x 1075,
Uy, = 60°.

Known from incompressible investigations the fundamental and subharmonic
resonances are both strong mechanisms to transition. Now for the supersonic
boundary layer, our simulations should shed some light on the question if
they are also a relevant mechanism for Ma = 3. Several computations were
conducted to reproduce a fundamental and subharmonic resonance. These
simulations indicated that the largest secondary growth rate occurs between
a two-dimensional disturbance and a disturbance with the wave angle close
to the one associated with the linearly most amplified wave.

For a fundamental resonance to take place within the computational domain,
the “classical” fundamental breakdown needs a disturbance amplitude of 10%
of the free-stream velocity (see figure 6.23). Due to these large amplitudes,
the fundamental breakdown does not seem to play an important role for Ma
= 3 transition. It is to the authors opinion that the high amplitudes levels are
necessary because of the small linear amplification of two-dimensional first
and second mode waves (c.f. figure 6.6). An APG only weakly influences
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Figure 6.24 Isosurface of Q-criterion @ = 2 (left) and spanwise vorticity w, =
15 (right) for a classical fundamental resonance; Re = 10°, R, = 740 — 895,
F=5x 10_5, ‘1’1,1 = 60°.

the growth rates of a two-dimensional wave whereas waves with a wave angle
unequal to zero are strongly amplified. Since the resonance mechanisms of a
fundamental or a subharmonic resonance is dependent on the amplitude of

the primary wave and not on the amplitude of the secondary wave, an APG

does not enhance the ”classical” fundamental or subharmonic breakdown
scenarios.

Figure 6.24b shows the lambda leg formation typically associated with this
breakdown. The stretching of the peak stations can be observed in the span-
wise vorticity isosurface plot (see figure 6.24c). Smaller amplitudes (< 1% of
the free-stream velocity) of the primary (1, 0)-wave show no fundamental res-
onance within the computational domain so that then an oblique breakdown
occurs.

6.3.2 Classical Subharmonic Resonance

While Thumm (1991) was able to find a weak subharmonic resonance for
Ma = 1.6, Bestek & Eissler (1996) could not successfully find it for Ma = 4.8.
At Ma = 3, there has been no indication of a subharmonic resonance with a
fundamental 2D wave in our simulations.

6.3.3 Oblique Fundamental Resonance

To find a breakdown scenario which might be at least as viable as the oblique
breakdown, we realized that a fundamental resonance between two three-
dimensional waves is possible. A first hint was provided in the “classical” fun-
damental (Klebanoff-type) breakdown where the (1, £2)-waves are strongly
amplified (c.f. figure 6.23).
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Figure 6.25 Oblique fundamental resonance: Amplitude distribution of u-
pertubation versus downstream direction. Re = 10°5, F = 5 x 1075, ¥;; =
60°,¥,; 5 = 74°.

Therefore, (1,+1) primary disturbance waves (amplitudes < 0.06% of the
free-stream velocity) and (1, +2) secondary disturbance waves (amplitudes <.
0.005% of the free-stream velocity) are combined for this breakdown scenario.
Since the frequency (F = 5 x 107°) is the same for both the primary and
secondary waves, we call this an “oblique fundamental resonance”. The wave
angles were chosen to be 60° and 74° for the primary and secondary waves,
respectively. So far, for the parameters tested, we found that the oblique
fundamental resonance in comparison with the “class1ca.l” oblique breakdown
is not an as strong mechanism.

Although figure 6.25 shows a deviation from the linear behavior of the sec-
ondary wave, the amplitude stays about 15 times smaller than the primary
wave. Also the nonlinearly generated steady (0, 1)-vortex rises to the same
amplitude level as the secondary wave, while the (0,2)- and (1, 3)-modes,
associated with a “classical” oblique breakdown amplify to the order of the
primary wave. Because the flow structures shown in figures 6.26a and 6.26b
resemble the ones of an oblique breakdown, we believe that in spite of the
resonance of the secondary wave, the “classical” oblique breakdown is the
superior mechanism.

6.3.4 Oblique Subharmonic Resonance

Three different combinations of an oblique primary disturbance with an
oblique secondary disturbance with half the frequency of the primary wave
are possible. Kosinov & Tumin (1996) concluded that a subharmonic reso-
nance of two three-dimensional waves might play an important role in super-
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Figure 6.26 Isosurface of Q-criterion Q = 0.2 (left) and spanwise vorticity
w; = 15 (right) for a oblique fundamental resonance; Re = 10%, R, = 705 —
925, F=5x 10_5, q’l,l = 60°.

Primary wave Secondary wave
frequency wave angle frequency wave angle
case I F2,2 =5x10"° ‘I’Q,Q = 60° F]_,]_ =25x%x10"° \I-’]_,l = 60°
case 11 F2,1 =5x10"° q/2’1 = 60° F1,2 =25x%x107° \1’1,2 = 82°
case III | F5, =5x107° | Wy; =60° | F;; = 2.5 x 10 U4 = T4°

Table 6.5 Oblique Subharmonic Breakdown. Overview of studied cases.

sonic boundary transition based on their experimental findings at Ma = 2.
Their numerical and theoretical work confirmed a possible resonance between
a primary (2, 1)-wave with secondary (1,—2)- and (1,1)-waves. In addition,
primary (2,2)- and secondary (1,1)-waves can both travel with the same
wave angle. To distinguish these subharmonic resonances from the “classi-
cal” one which involves a two dimensional primary and oblique secondary
disturbance, we call this breakdown “oblique subharmonic resonance”.

For our investigations for a Mach 3 boundary layer, three different cases were
computed (see Table 6.5). First, the primary disturbances (2, £2) are excited
with an amplitude of 0.3% (of the free-stream velocity), and the secondary
disturbances (1,=£1) have an amplitude of 0.005%. Thus both primary and
secondary waves have the same wave angle of ¥ = 60°. For case II and case
111, secondary waves of different wave angles are combined with a primary
wave (2,%1) (¥g; = 60°, amplitude of 0.1%). For case II, the secondary
waves are (1,+2)-modes with ¥, , = 82° and also disturbed with an ampli-
tude of 0.005%. For case III, the secondary disturbances are (1,1)-modes
with an amplitude of 0.005% and ¥, ; = 74°. The primary disturbance am-
plitude in case I is three times higher than in the other two cases to see at
least a small deviation from the linear eigen-behavior of the secondary wave.
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Figure 6.27 Oblique subharmonic resonance: Amplitude distribﬁtion of u-
perturbation versus downstream direction for cases I, II and III from left to
right, respectively; Re = 10°, Fp, =5 x 1075, F}, = 2.5 x 1075, ¥, , = 60°.
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Figure 6.28 Oblique subharmonic resonance: Isosurface of Q-criterion for
cases I (Q = 3), I (Q =0.2) and III (@ = 0.2) from left to right, respectively;
Re = ].05, Fg’x =9 X 10_5, Fl,x =2.5X 10—5, \Iiz,x = 60° )

But, as can be seen in figure 6.27a, the nonlinear generation of higher modes
is still not emphasized. However, the amplification curves of figures 6.27b
and 6.27c clearly indicate that strong nonlinear interaction can occur indi-
cating that oblique subharmonic breakdown mechanisms may be relevant for
the Mach 3 boundary layer. Surprisingly, the oblique subharmonic break-
down produces a more rapid amplitude growth in the downstream direction
at lower amplitudes if the primary and the secondary waves are forced with
different wave angles than if primary and secondary waves have the same
wave angle (c.f. figure 6.27a with figures 6.27b and 6.27c). This is an in-
dication that the wave angle between primary and secondary waves plays
an important role for energy transfer from the base flow to the disturbance
waves and between primary and secondary waves. In case II, where the sec-
ondary wave is mode (1,2), the nonlinearly generated (1, 1)-wave also shows
some nonlinear resonance slightly downstream of the resonance location of
the (1,2)-wave. But in case III, where the forced (1, 1)-wave shows resonance
about the same location as in case II, the generated (1,2)-wave reveals no
nonlinear resonance. »

The structures in figures 6.28a, 6.28b and 6.28c all strongly resemble the
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Figure 6.29 Oblique subharmonic resonance: Isosurface of spanwise vorticity
w, = 15 for cases I, II and III from left to right, respectively; Re = 105,
Fg,z =5 X 10_5, F]_,z =25x% 10—5, ‘I’z,z = 60°

structures found in an oblique breakdown (see figure 6.40 in § 6.4). For the
simulations with different wave angles (case II and case III), the spanwise
vorticity (w,) exhibits an additional “tongue” in-between the two main struc-
tures (see figures 6.29b and 6.29¢ in comparison with figure 6.26¢). Overall,
it appears that similar mechanisms as for the “classical” oblique breakdown
are present. '

6.4 Oblique Breakdown

Thumm (1991) was the first who realized the importance of the oblique
breakdown as a mechanism that could lead to turbulence. He described in
detail the physics of the start up of the oblique breakdown. Until now it is
still not clear if an oblique breakdown really leads to turbulence and if this
mechanism plays a significant role in nature.

1=

Figure 6.30 Wave front of the 3D waves in the computational domain.
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What is oblique breakdown? According to Mack (1984), the Squire theorem,
which states that the critical Reynolds number is defined by the location
where 2D waves are amplified, is not valid for compressible flow. Instead, 3D
waves are highly amplified and for a given Mach number there is a specific
wave angle which leads to most amplified TS-waves. Oblique breakdown
is caused by the nonlinear interaction of these 3D waves. In the numerical
simulations presented in this work, the development of a 3D wave throughout
the computational domain is simulated, similar to the § 6.2, but with higher
amplitudes. Since the DNS code employs symmetric Fourier transforms in
the spanwise direction, two 3D waves, with ¥ and —¥ as their wave angles,
are excited simultaneously in the disturbance slot (figure 6.30). If the 3D
waves reach large amplitudes farther downstream, they will start to interact
with themselves and with each other. For a more detailed investigation the
flow properties are decomposed using a Fourier-transform with respect to
time and the spanwise direction:

'H . K
¢y, zt) = Y D bx,y)etorn), (6.2)

h=—Hk=—K

where H is the number of Fourier modes in time and K in the z-direction.
This formulation has the advantage that it can be used to show how higher
modes in time and space are created by the nonlinear terms of the Navier—
Stokes equations. For example,

3ui
Uj — (6.3)
I axj
creates terms like
et Bttkirz) | pilhoBttkarz) _ pil(hi+ha)Bt+(katha)yz) (6.4)
Equation (6.4) indicates that the modes in time and in the z-direction of

the interacting waves must be added to generate higher solutions. As an
abbreviation equation (6.4) can also be written as

(h1, k1) + (ha, ko) = (b1 + ho, k1 + ky); (6.5)

where (hy, k;) indicates a mode combination with the frequency h;8 and
the spanwise wave number k;y. For a 3D wave with a frequency 3 and a
wave number v, h and k are equal to one. The wave, which is mirrored at the
symmetry line of the domain, which is parallel to z and located in the middle
of the spanwise direction, has —¥ as its wave angle and, consequently, =1
and k = —1. The possible mode combinations, that are created by these two
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waves, are listed in table 6.6. The resulting waves exist in addition to the
original waves and can also interact with them to produce even higher mode
combinations like (1,3) or (4,0). An interesting consequence of the oblique
breakdown is that mode combinations with odd modes in time have only
odd modes in z and with even modes in time only even modes in z (Thumm,
1991). '

(h1, ki) + (ha, ko) || (Ro+ ho, by + ko) |
(1,1)+(1,1) (2,2)
(1’ 1) + (1, "—1) (27 O)
(17 1) + ("13 1) (Oa 2)
(171) + (_1>_1) (070)
(17 '—1) + (17 "'1) (27 _2)
(1,-1)+(=1,-1) (0,-2)
(_1’ 1) + (_17 1) (—2a 2)
("']-a 1) + (_17 _1) (_27 0)
(_1: —1) + (_17 _1) (_-2’ -2)

Table 6.6 Selected mode combinations of a (1,1) and (1,-1) wave-pair.

- 1,1

T a-y o

Figure 6.31 Wave number diagram for the mode combinations (1,1), (1,-1),
(2,0) and (0,2).

The mode combinations can be plotted as vectors in a wave number diagram
(figure 6.31). The generation of the higher mode combinations is equiva-
lent to a vector summation or subtraction. In figure 6.31 two examples are
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shown. Note that (1,1) and (1,-1) are the subharmonic mode combinations
of (2,0). However, there is no subharmonic resonance (staggered A-vortices)
since the 3D waves are linearly more amplified than the 2D wave. Thumm

(1991) observed that the mode combination (0,2) has the highest influence:

on oblique breakdown in its start up.

It is of interest to see how a mode combination would look in physical space.
Since we are interested in vorticity waves, i.e., TS-waves, a wave ansatz is
introduced which has the form

$(2,y, 2,8) = Gy)ehomthrethact), (6.6)

If h is increased the wave will have a smaller wavelength (divided by h)
and if k is increased the wave will have a larger wave angle. ¢ represents a
arbitrary flow quantity, e.g., the u-velocity. An instantaneous plot of the u-
velocity of the wave at a specific y-location includes positions of the maximum
and minimum of the u-velocity. The positions of the maximum (minimum)
are repeated every wavelength as is illustrated in figure 6.32. The plot is
calculated with the real part of equation (6.6), but without amplification of
the waves. The values on the z-axis do not match any values obtained from
a DNS, since they are intended for visualization purposes only. Since the

Figure 6.32 Example of a 3D wave traveling with the wave ahgle ¥ = 65°.

u-velocity vector is parallel to the flow direction, a wave in the u-velocity is
a longitudinal wave.

The interference of waves with the wave angle ¥ and —V is visualized in
figure 6.33. It represents a superposition of two 3D waves. The linear stage
of oblique breakdown should be dominated by such structures. They have a
shape similar to the letter “X” where the maxima are located in the center
and at the ends of the “X”. Structures with a “X”-shape in the pressure
distribution were observed in preliminary simulations of the nonlinear stage
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of oblique breakdown, and we will look for them in the results presented in
the following sections. Before the results obtained by the DNS are discussed,
attention is being devoted to the influence of the (0,2) and (0,4) mode combi-
nation on the “X”-shape. The (0,2) and the (0,4) are stationary distortions

of the baseflow. Figures 6.34 and 6.35 illustrate how the distortion of the
baseflow alters the “X”-Shape.
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Figure 6.35 Influence of mode combination (0,4).




6.4.1 Without Pressure Gradient

All oblique breakdown calculations are conducted with the flow properties
which were used for the supersonic validation cases in § 4.5. A detailed
summary of the computational parameters for case OBLNP3, the simulation
presented in this section, can be found in appendix C. The computational
domain starts at R, = 750 and ends at R, = 1438. Disturbances with the
amplitude A;; = 0.003 and angular frequency F = 3 X 1075 are introduced
into the computational domain between R, = 927 and R, = 993. The
computational domain is four boundary layer thicknesses high. The buffer
domain starts at R, = 1380. At the location where the disturbances are
introduced, the grid is equidistant in z and 22 points resolve one streamwise
wavelength ;. Downstream of the disturbance slot, the grid is stretched until
the position R, = 1365. At this location Az has such a value that 176 points
resolve one streamwise wavelength A,. 55 modes are used in the spanwise
direction. The resolution of the calculation is higher than the resolution of

Figure 6.36 Isosurface of streamwise vorticity |w,| = 1 between R, = 1085
and R, = 1291.

the simulations presented by Thumm (1991) and Eissler (1995). For that
reason it is possible to compute deeper into transition and to investigate
how new structures arise. Thumm (1991), in his work, discussed structures
visualized by the streamwise vorticity w, which have the shape of tongues.
The tongues split into two tips further downstream. Preliminary simulations
carried out for the present research had shown that for higher Mach numbers
the tips developed more strongly on one side. In figure 6.36 these structures
are plotted for |w,| = 1 between R, = 1085 and R, = 1291 for the simulation
OBLNP3. The top view of figure 6.36 also shows the previously discussed
“X"-shape. However, the structures do not really look like the predicted
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Figure 6.37 Contour of u-velocity between R, = 1085 and R, = 1291 at
location y = 0.001 and y = 003.

shape shown in figure 6.33. For that reason, the u-velocity was checked
whether there the “X-shape” appears. In figure 6.37 contours of the u-
velocity at different y-locations in the boundary layer are plotted. At y =
0.003 the predicted “X”-shape is visible. Upstream, two parallel black lines
are getting stronger which are caused by the (0,2) mode combination. It

1.00.02!

Ppds

1.0e.03:

10004

Figure 6.38 Distribution of |ujo x|mas (left) and U[1,kjmae (Tight) versus R,.

is very interesting that at a different y-location the contours look differently.
At y = 0.001 the “X” is almost not visible anymore and only two parallel
black lines (the (0,2) mode combination) dominate the velocity field. The
explanation for that behavior can be found in the following two figures. The
mode combinations (0,2) and (1,1) are strongly amplified and they have high
amplitudes between R, = 1085 and R, = 1291 (figure 6.38). The amplitude
distribution of these two mode combinations over y for different downstream
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Figure 6.39 Development of the amplitude distribution of Ufh, ]/ Y[h,kjmas OVET
Y.

locations is illustrated in figure 6.39. The maximum of the (1,1) is located
at a different location than the maximum of the (0,2). This means that the
mode combinations have a different influence for changing y locations. At
y = 0.001 the (1,1) is very weak and that is why the (0,2) is strongly visible
in figure 6.37. At y = 0.003 both modes are present. It is also of interest
that the (0,2) mode combination is significantly changing in the downstream
direction. Its maximum is shifted to higher values of i and the absolute value
of the minimum is decreasing until position R, = 1357 where the locations
of the maximum and the minimum are inverted. Note that at R, = 1085
the absolute value of the minimum is higher than the maximum. At position
R, = 1208 the maximum is higher than the absolute value of the minimum.
For that reason there is a significant change in the slope of the amplitude
distribution of the (0,2) at around R, = 1140 in figure 6.38. The shift of
the maximum to higher y-values is the explanation for the changing pattern
of the u-velocity contour at location y = 0.003 (figure 6.37). Upstream, the
flow is dominated by the “X”-shape. Farther downstream, the (0,2) is getting
stronger because its amplitude value is changing from a negative to a positive
value for higher local Reynolds numbers (until R, = 1357).

The latter discussion emphasizes that in the u-velocity, the predicted “X”-
shape can be found since the “X”-shape is caused by the mode combinations
(1,1) and (1,-1). However, it is not clear if this is a dominant structure since
in every quantity different patterns arise at different y-locations. A good
identification of structures can be obtained by employing a vortex identifica-
tion technique called Q-criterion. It is based on the vortex definition given
by Chong et al. (1990). A vortex is located in a region in the flow field
where the vorticity is sufficiently strong to cause the velocity gradient tensor
to be dominated by the rotation tensor. That means mathematically that
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Figure 6.40 “X”-shape vortices identified by Q-criterion with @ = 10 between
R, = 1085 and R, = 1291.

Figure 6.41 “X”-shape vortices identified by Q-criterion with Q = 30 between
R, =1085 and R, = 1291.

the magnitude of the symmetric part of the velocity gradient tensor, which
describes the strain, is smaller than the asymmetric part that describes the
rotation. @ identifies the difference between the magnitude of rotation and
the magnitude of strain, so that

. v
Q= E(Wz‘y‘ma' = 5i54), (6.7)

where W;; indicates an element of the rotation tensor and S;; an element
of the strain tensor. For positive values of Q, rotation is stronger than
strain. Note that equation (6.7) is an incompressible definition. For an
incompressible flow, @ is invariant with respect to its reference frame. That
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is not true for compressible flows. Nevertheless, it still defines locations
where rotation dominates the flow field. If equation (6.7) is applied to the
previously discussed flow field it visualizes structures presented in the figures
6.40 and 6.41. The @-criterion confirms the “X”-shape.

Since the integration domain extended further downstream than at R, =
1291, the deformation of the “X”-shape can.be investigated. Figures 6.38
and 6 39 already give an impression of what will happen further downstream.
Higher mode combinations are gaining importance. The amplitude distribu-
tion in y of the (0,2) (figure 6.39) is significantly changing between R, = 1333
and R, = 1357. This is also connected with its amplitude distribution in
x where its value is strongly decreasing downstream of R, = 1320 (figure
6.39). The mode combination (0,4) has the highest value of all stationary
mode combinations downstream of R, = 1300. Its effect on the u-velocity
is demonstrated in figure 6.42. The four bright lines parallel to the z-axis
represent the four maxima of the (0,4). At the end of the domain six black
lines are getting stronger which are the minima of the (0,6). A 3D view of

y=0.001

Figure 6.42 u-velocity at y = 0.001 between R, = 1333 and R, = 1380.

an isosurface of the u-velocity for the value u = 0.65 is given in figure 6.43.
The previously discussed “X”-shape is visible. Further downstream, the legs
of the “X” which are closer to the buffer domain are pushed away from the
wall. This process clearly thickens the boundary layer (figure 6.44). Parti-
cles with high velocity are transported closer to the wall and particles with
low velocity are pushed away from the wall. At the end of the domain in
figure 6.43 new structures arise parallel to the x-axis at 2 = A,/2 (along the
symmetry line). The @-criterion confirms the new structure in figure 6.45.
At the start of the buffer domain (R, = 1380), the resolution becomes too
coarse to resolve the small structures. Grid mesh due to the lack of resolution

85




Figure 6.43 3D isosurface of the u—velobity with u = 0.65 between R, = 1208
and R, = 1380.

==001121

Figufe 6.44 Contours of the u-velocity in the computational domain between
R, = 1208 and R, = 1380 at 2z = 0.273 x \,, the position where one leg of
the “X” is pushed away from the wall.

occurs in the z-direction (figure 6.45). The influence of higher modes in time
on the generation of the new structures is limited. Only the mode combina-
tions (2,0), (2,2), (2,4) and (2,6) have high enough amplitudes (figure 6.46)
to significantly alter the flow field.

6.4.2 With Adverse Pressure Gradient

In this section two simulations are compared, one with (case OBLPG) and
one without pressure gradient (case OBLNP4). The computational domain
and flow quantities are the same with the exception of the pressure gra-
dient and the disturbance amplitude which is almost four times higher for
the simulation without APG. The domain starts at R, = 1226 and ends at
R, = 1782. Disturbances with the angular frequency of F = 3 x 10~3 are in-
troduced into the domain through a blowing and suction slot located between
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Figure 6.45 “New structures” between the legs of the “X”-Shape identified
by the Q-criterion for @ = 500 between R, = 1333 and R, = 1380.
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Figure 6.46 Distribution of ujg tjmas (left) and s xjmes (right) versus R,.

R, = 1332 and R, = 1369. The buffer domain starts at B, = 1715. The
domain is about four boundary layer thicknesses high. The grid stretching
starts downstream of the disturbance slot and ends at R, = 1657. The ratio
%g is chosen in such way that 88 points are in one streamwise wavelength A,
downstream of R, = 1657. 16 modes are used to resolve the spanwise direc-
tion. With this low resolution only the start up of oblique breakdown with
and without APG can be simulated. It was not possible to compute farther
into transition and, therefore, to choose a higher resolution since the pressure
distribution at the free-stream drifts from its desired value. This may well be
the correct physical behavior; however, more investigations are required to
prove this. The simulation OBLPG has a moderate APG. The distribution
of the Hartree parameter Sz over R, indicates an almost constant value of

B ~ —0.12 (figure 6.47).
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Figure 6.48 Distribution of |ujx)|maz (t0D) and w1 gjmas (bottom) versus R,
for cases OBLNP4 (no APG, left) and OBLPG (with APG, right).

The amplitude distributions of the individual mode combinations (k) versus
R, for both simulations are plotted in figure 6.48. All mode combinations
(h,k) experience a much higher amplification for case OBLPG than for case
OBLNP4. The APG has a strong impact on the amplification rate. For that




reason the disturbance amplitude in the suction and blowing slot has to be
much smaller than for case OBLNP4, as mentioned earlier, otherwise the
disturbance waves would reach much faster the nonlinear stage and the flow
would start to transition further upstream. However, this is not desired since
in both simulations the flow is required to transition shortly upstream of the
buffer domain, so that the calculation can run stable and can converge out.
The abrupt changes of the slope of the stationary mode combinations (0,2)
and (0,4) in figure 6.48 (top left) can be explained in the same way like for
figure 6.38. For example, the absolute value of the minimum (of the (0,2)) is
at one R,-location bigger and at another R, smaller than the absolute value
of the maximum (also of the (0,2)), so that at the position where it changes an
abrupt switch in the slope of the amplitude distribution over R, is visible.
In the case OBLPG abrupt changes cannot be found in figure 6.48 (top
right). However, they exist at lower amplitude levels and therefore at lower
local Reynolds numbers. The mode combination (1,1) for case OBLNP4 is
weakly amplified (figure 6.48, bottom left). The amplitude value of the (1,3)
is increasing much faster than the amplitude value of the (1,1). For that
reason, downstream of R, =~ 1650 the (1,3) has a higher amplitude than the
(1,1). For the case OBLPG, the (1,1) is strongly amplified and that is the
reason why the (1,3) does not reach higher amplitude values than the (1,1)
in the presented computational domain.

Figure 6.49 Isosurface of Q = 2 for case OBLNP4 between R, = 1644 and
R, = 1715.

The structures which are identified by the Q-criterion look very similar to
the structures obtained by simulation. OBLNP3 (figure 6.49, 6.50, 6.51 and
6.52). The “X”-shape is dominant for both calculations. In the simulation
OBLNP4, the maximum in the center of the “X” is divided in three parts and




Figure 6.50 Isosurface of Q@ = 5 for case OBLPG between R, = 1644 and
R, = 1715.

Figure 6.51 Isosurface of @ = 30 for case OBLNP4 between R, = 1644 and
R, = 1715.

two spikes are coming out of its head for small values of Q. This behavior was
also observed in simulation OBLNP3 (however, no plot in the last chapter
indicated this because attention was being devoted to different properties
of the “X”-shape). Most likely the division of the maximum is caused by
the (1,3) mode combination since the calculation with APG does not show
this. Nevertheless, detailed investigations have to be performed to prove this
statement. The slim structure along the symmetry line in figure 6.50 at the
end of the domain can also be observed in the simulation without APG at a
lower level of Q. It does not serve as an indication for the differences between
both calculations.




Figure 6.52 Isosurface of Q = 50 for case OBLPG between R, = 1644 and
R, =1715.

6.5 Summary of Nonlinear Breakdown Scenarios

An overview of the nonlinear breakdown scenarios we investigated can be
found in table 6.7. As already discussed in § 2.3, in addition to the clas-
sical subharmonic and fundamental breakdown scenarios of incompressible
boundary layers, the so-called “oblique breakdown” may play a role for su-
personic boundary layers. For the oblique breakdown, only modes (1,%1)
have to be forced. We first discovered the oblique breakdown mechanism
for Ma = 1.6 (Thumm, 1991), and it was found later that it may also be
relevant for Ma = 4.8 (Eissler, 1995). Thus, we first needed to confirm if
the oblique breakdown was also relevant for the Ma = 3 case of the Prince-
ton experiments. Nonlinear transition scenarios for Ma = 3 are likely to be
more interesting than for Ma = 1.6 (albeit also more complicated) because,
depending on the local Reynolds number, first and second modes can both
be excited linearly and nonlinearly.

In flight vehicles, boundary layers are subject to streamwise pressure gradi-
ents, both favorable and adverse. Adverse pressure gradients are more critical
as they accelerate transition while favorable pressure gradients delay tran-
sition. Therefore, in anticipation of the planned experiments with adverse
pressure gradients at the Princeton facility, we started oblique breakdown
simulations (under the conditions of the Princeton experiments) to investi-
gate if the oblique breakdown is also relevant for Ma = 3 when an adverse
pressure gradient is imposed. As is characteristic for the oblique breakdown,
only (1, £1) modes are forced, in this case two oblique waves with a wave an-
gle of 65 degrees (most amplified according to linear theory). For the forcing,
a blowing and suction slot is used that is located one streamwise wavelength
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case

description

oblique breakdown
with and without
.. pressure gradient

Tpo = 103.6K, Uy, = 65°
A1,1 = 0.3%,F1’1 =3 X 10_5

I

e n

“classical” fundamental
breakdown

1% mode, T, = 103.6K
T, =60°, F=5x10°
A]_’g = 8%, Al’]_ = 005%

-1

2

oblique subharmonic
breakdown

Tw = 103.6K
\PQ’Q = 60°, F2,2 =5x 1075
1:[’1,1 = 60°, Fl,l =25x%x10"%
A2’2 = 03%, A1,1 = 0005%

oblique subharmonic
breakdown

T = 103.6K
Uyp =60° Foy =5x 1078
U, 9 =81° F1,=25x%x10"%
A1 = 0.1%, A;2 = 0.005%

oblique subharmonic
breakdown

T = 103.6K
‘1’2,1 = 600, F2,1 =H X 10—5
11’1,1 = 740, Fl,l =2.5x% 10_5
Ay = 0.1%, Ay, = 0.005%

e

Table 6.7 Overview of breakdown scenarios: (h, +k, where h is the frequency,
k the spanwise Fourier mode; B primary wave, O secondary wave.




(Az) downstream of the inflow boundary. It was shown that for the adverse
pressure gradient case (Hartree parameter By varied between -0.11 and -0.12
in the computational domain) the nonlinear wave components grow more
rapidly than for the zero pressure gradient case, a manifestation that an ad-
verse pressure gradient does not only not interfere Wlth this mechanism but
rather enhances it.

To study the mechanisms present in an oblique breakdown in more detail,
a high resolution simulation which extended farther into the late stages of
transition was also investigated. The oblique modes (1, £1) were rapidly
amplified in the downstream direction and, as their amplitudes grew, mul-
tiple other modes were generated from nonlinear interactions. Prominent in
this respect was the generation of steady longitudinal modes [(0,2), (0,4),
...], which are steady vortices. This implies, that steady vortices (such as,
for example, those produced by distributed roughness) could also trigger this
breakdown mechanism when only very small oblique disturbances are present.
Typical flow structures that arise during the later stages of this oblique break-
down scenario were documented in § 6.4. An important observation gained
from these simulations is the fact that the nonlinear mechanism of the oblique
breakdown sets in at very low amplitudes (= 0.3% of the free-stream velocity)
and thus is a potentially highly relevant breakdown mechanism for Ma = 3
at low free-stream turbulence levels (free flight). We therefore recommend
strongly future investigations of this mechanism, preferably in collaboration
with the Princeton experiments.

In addition to the oblique breakdown, we investigated, if the “classical” fun-
damental (Klebanoff) breakdown scenario [(1,0), (1, £1)] is also relevant.
The amplification curves and the structures resulting from the “classical’
fundamental breakdown were. shown in § 6.3. However, since much larger
amplitudes were required to initiate the fundamental breakdown, it is likely
to be relevant only for high free-stream turbulence conditions. Nevertheless,
this breakdown mechanism needs to be investigated because of its possi-

ble relevance for interpreting experimental measurements from “noisy” (high

free-stream turbulence level) facilities. It should be noted that measurements
in the Russian experiments for a sharp-nosed cone at Ma = 6 (Shiplyuk et al.,
2003) indicated that a two-dimensional second-mode subharmonic instabil-
ity was present. In our Navier—Stokes simulations at Ma = 3, resonance oc-
curred at much lower amplitudes for the second-mode “classical” fundamental
breakdown scenario than for the first-mode scenario. Therefore, “classical”
fundamental and “classical” subharmonic breakdown scenarios are likely im-
portant for second-mode disturbances.

In addition to the “classical” nonlinear resonance mechanlsms we investi-
gated other resonance mechanisms that may become relevant due to the fact
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that, for supersonic boundary layers, the first-mode oblique disturbances are
linearly more amplified than first-mode two-dimensional disturbances (which
are most amplified in incompressible flows). Assuming that this behavior also
holds for the nonlinear stages, we investigated subharmonic and fundamen-
tal nonlinear resonance mechanisms for oblique fundamental waves where
both primary and secondary disturbance waves are three-dimensional. For
the oblique fundamental resonance, disturbances in the (1,£1) modes for the
primary waves (amplitudes = 0. 02% of the free-stream velocity) and in the
(1,£2) modes for the secondary waves (amplitudes = 0.005% of the free-
stream velocity) resulted in a wave angle of 60 degrees and 74 degrees for
the primary and secondary waves, respectively. Our results indicate that
the oblique fundamental breakdown triggers an essentially “oblique break-
down,” however, at even lower disturbance amplitudes than when only one
pair of oblique waves is introduced. Simulations with different free-stream
temperatures showed that the influence of the free-stream temperature on
the nonlinear development is not profound as the onset of transition moves
only slightly upstream for T' = 103.6 K when compared with T = 300K. The
extent of the nonlinear transition regime is somewhat larger for T = 103.6 K
than for T = 300K. Therefore, an outflow treatment (buffer domain) had to
be used for this calculation in order to prevent a “blow up” in the case with
T = 300K with equal resolution.
In § 6.3, we also investigated the subharmonic resonance that Kosinov & Tu-
min (1996) suggested to be relevant in the experiments of a Mach 2 bound-
ary layer. Three different scenarios were considered. First, the primary
disturbances (2,%2) were excited with an amplitude of 0.3% (of the free-
stream velocity), and the secondary disturbances (1,%:1) had an amplitude
of 0.005%. Thus both primary and secondary waves had the same wave
angle of ¥ = 60 degrees. For the second and the third case, secondary
waves of different wave angles were combined with a primary wave (2,£1)
(¢ = 60 degrees, amplitude of 0.1%). For the second case, the secondary
waves were (1,£2) modes with 9 = 81 degrees and also disturbed with an
amplitude of 0.005%. For the third case, the secondary disturbances were
(1,£1) modes with an amplitude of 0.005% and ¢ = 74 degrees. The ampli-
fication curves clearly indicated that strong nonlinear interaction can occur.
Surprisingly, the oblique subharmonic breakdown produced a more rapid
amplitude growth in the downstream direction at lower amplitudes if the
primary and the secondary waves are forced with different wave angles than
if primary and secondary waves travel with the same wave angle. This is an
indication that the wave angle between primary and secondary waves plays
~ an important role for energy transfer from the baseflow to the disturbance
waves. The different wave angles between primary and secondary waves also
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have an effect on the flow structures during breakdown, in particular also on
the spanwise vorticity structures. Again, the experiments in the Princeton
tunnel and more detailed numerical investigations need to confirm this.

it
- a}without pressure gradient w28 2 b) with pressure gradient w2y

1) “Classical* fundamental brewkdown

1) Oblique Aimdamental breakdown

o}T=1036K

a)T=300K

V) Oblique subharmonic breakdown

Figure 6.53 Near-wall temperature distribution for different breakdown sce-
narios. I) Oblique breakdown, F = 3 x 107%, T,, ='103.6K. a) without
pressure gradient. b)with pressure gradient. II) “Classical” fundamental
breakdown, 1% mode, F = 5 x 1073, T, = 103.6K. III) Oblique fundamen-
tal breakdown, F = 2x 1075, a) T,, = 103.6K. b) T, = 300K. IV) Oblique
subharmonic breakdown, Fy; =5 x 1075, Fy o = 2.5 x 10~%, T,,, = 103.6K.
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As can be seen in figure 6.53, the various breakdown scenarios also leave a
strong imprint on the near-wall temperature distribution. This is of signifi-
cance, of course, as heat loads associated with laminar-turbulent transition
are a major concern in the design and safe operation of high-speed flight vehi-
cles. Interesting in this respect is the fact that certain breakdown scenarios
such as the oblique and oblique subharmonic resulted in higher tempera-
tures than the various fundamental breakdown scenarios with the “classical”
(Klebanoff) breakdown resulting in the lowest temperatures. This may possi-
bly be exploited by alternating the natural transition process using artificial
means, such as surface texturing, or changing the design altogether so that
certain disadvantageous (from a wall heating point of view) breakdown sce-
narios are avoided. From an experimental point of view, it is of interest if
the various nonlinear breakdown scenarios could be observed with visual-
ization techniques that are realizable for supersonic flows, such as Schlieren
techniques. Therefore, in figure 6.54, Schlieren pictures obtamed from the
various breakdown simulations are shown Clearly, the different breakdown
mechanisms leave a distinct mark on the Schlieren patterns. Notice, for ex-

ample, the rope-like structures that were observed in the experiments (see

Pruett & Chang, 1995). Therefore, when simulations are combined with
experiments, dominant breakdown mechanisms may be identified from ex-
perimental Schlieren pictures before going into detailed and expensive mea-
surements.
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Figure 6.54 Simulated Schlieren pictures of various breakdown mechanisms.
Shown are side view of wall-normal density gradient (I) and top view of
streamwise density gradient (II): a) oblique breakdown with zero pressure-
gradient, b) oblique breakdown with APG, c) classical fundamental break-
down, d) oblique fundamental breakdown, e) oblique subharmonic break-
down.




7. CONCLUSIONS

With the funding from the current AFSOR grant, we focused our numer-
ical simulation efforts on a collaboration with the experiments for a Mach
3 flat-plate boundary layer carried out at Princeton University (G. Brown).
Brown and co-workers (see Graziosi, 1999; Graziosi & Brown, 2002) have
been performing “natural” and “controlled” transition experiments in the
Low Turbulence Variable Geometry wind tunnel. Typical results from our
simulations of the “natural” transition experiments were presented in this
report. To confirm that simulations and experiments were based on the
same “baseflow,” the experimental baseflow profiles were compared with our
Navier-Stokes results. The agreement was reasonably good, except for the
last downstream location which was outside the “quiet” region. The down-
stream development and the spatial growth rates of the disturbances obtained
from the Navier-Stokes computations were compared with the experimental
measurements. The agreement was remarkable, considering that the data
were from natural transition experiments and considering the difficulties and
uncertainties when trying to carry out supersonic stability and transition
experiments.

From these and other comparisons of our Navier-Stokes results with ex-
perimental data, we are reasonably sure that more challenging transition
experiments can be performed in the experimental facility such as, for ex-
ample, investigations of the nonlinear stages of transition and the onset of
the breakdown to turbulence. Towards this end, G. Brown has been devel-
oping a technique to allow for “controlled” transition experiments using a
loudspeaker upstream of the contraction nozzle to generate controlled (for
example single frequency) disturbances (Brown & Fan, 2003). The experi-
mental data obtained so far clearly indicate that “controlled” experiments
can indeed be carried out in this facility. In addition, because of the forc-
ing technique employed in these experiments, the receptivity to sound can
also be investigated. In order to perform such receptivity investigations, we
have already modified our code. Towards this end, we first had to implement
free-stream boundary conditions to allow for variable free-stream pressure.
To validate the modified code, transition simulations with adverse pressure-
gradients for a flat plate were performed at low Mach number (Ma = 0.1)
and the results were compared to simulations from an incompressible code.
Towards the understanding of the nonlinear mechanisms, we simulated nu-
merous nonlinear resonance and breakdown scenarios for a Mach 3 flat-plate
boundary layer with and without adverse pressure gradients. The objective
of these simulations was to identify scenarios that may be relevant for labora-
tory and/or realistic flight conditions. With such simulations we can screen
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the extremely large parameter space for possible nonlinear interaction and
breakdown scenarios so that the most viable and relevant ones can be investi-
gated rigorously in experiments and detailed simulations. This will result in
considerable savings of time and experimental costs of future investigations.




APPENDIX A: Code Parallelization

For the present investigation, most simulations have been carried out on ma-
chines of the SGI Origin 3k series with MIPS 400-700 MHz R12k or R16k
processors, IP35 or IP27 architecture and 8 MB cache and HP Alpha ma-
chines. The efficiency of the parallelization algorithm for these shared mem-
ory machines has been tested and it turned out to be high enough to justify
the use of up to 400 processors — the maximum number of CPUs possible
for the largest problem size investigated. For some calculations even a su-
perlinear speedup could be obtained, i.e., running a simulation with n-times
the processors is more than just n-times faster. The reason for this lies in
the fact that for smaller computations the memory requirements can exceed
the cache of one processor but do not exceed the combined cache available
to the n processors. Thus, if feasible, the number of processors was chosen
to be sufficiently large for exploiting cache effects.

In order to evaluate the performance of the parallel algorithm, we define the
speedup :

)
and the parallel efficiency
B=2 (A2)

where t(n) is the elapsed time of the computation using n processors. Am-
dahl’s law states that the speedup is limited by the parallel fraction fp of the

program:
1 1

< )
2ii-p 1-fp
for n — co. A lower bound of the performance of any program can be esti-
mated in millions of floating-point operations per second (MFLOPS).

% = (A.3)

Program performance on an SGI Origin 3800 with IP35 architecture is evalu-
ated by computing 200 timesteps of a three-dimensional turbulent boundary
layer simulation using 240 x 130 points and 16 Fourier modes (33 physical
points). It represents a typical calculation which includes data input and
output. The number of processors are varied and the problem size is kept
constant, thus increasing the relative overhead of the parallelization with in-
creasing number of CPUs. The memory requirements for this case are such
that more than 33 processors are needed to fit the memory completely into
cache, and 40 processors are the maximum possible due to domain length
limitations.
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Number of | MFLOPS Total CPU Sp Ep
CPUs per process | MFLOPS || time [s]
1 101 101 2,500 1.0 | 100%
2 106 212 1,197 2.1 | 104%
4 94 376 691 36 | 91%
8 90 720 348 7.2 90%
12 89 1068 239 10.5 | 8%
16 80 1280 198 - [ 12.6 | 79%
20 72 " 1440 177 | 14.1| T1%
24 77 1848 142 17.6 | 73%
30 84 2520 106 23.6 | 79%%
36 87 3132 86 29.1 | 81%
- 40 85 3400 79 31.7 | 79%

Table A.1 Program performance on an SGI Origin 3800 for different numbers
of processors and a fixed problem size.

Table A.1 and figure A.1 clearly show that increasing the number of proces-
sors incurs a performance penalty because of the additional communication
associated with the parallelization. The penalty is visible in the decrease of
MFLOPS per processor and parallel efficiency. Nevertheless, overall program
performance (speedup and total MFLOPS) is still increasing and computa-
tion time is decreasing. Starting with the use of 20 CPUs, the communication
penalty is more than compensated by the appearance of cache effects. With
increasing number of processors and hence increasing total cache size, more
and more of the data can be accessed faster and parallel efficiency increases
considerably. At 36 processors all data fit in cache. A further increase in
CPUs does not enhance any cache effects and, consequently, can not compen-
sate any concomitant increase in communication penalty. Thus the efficiency
decreases again. However, the theoretical lines in figure A.1 show that fitting
the data in cache is still equivalent to computing with an algorithm of higher
parallel fraction — shifting the maximum speedup to higher values.

In addition to exploiting cache effects, program performance can be enhanced
by optimizing the scheduling environment of the multi-processor computer.
In figure A.1, results using the system default environment (squares) are
compared with a user defined environment (solid circles). For more than four
CPUs, the effect of an optimized scheduler is again equivalent to increasing
the parallel fraction of the algorithm and hence highly effective in the case of
a larger number of processors. Clearly, any time invested in optimizing the
scheduler environment is time well spent. '
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Figure A.1 Speedup (left) and efficiency (right) of parallization on an SGI
Origin 3800; circles (o) and squares () from computation with and without
optimized multiprocessing environmental variables, respectively; theoretical
lines from Amdahl’s law with parallel fractions — 100%, - - - 99.3%, - —

99%, and - - - 90%.
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APPENDIX B: Grid Convergence Studies

B.1 Linear Stability Investigations

450 500 5§50 600 650 700

Figure B.1 Influence of different domain heights on amplification rate (32
points per A, 10 points per 6).

B.1.1 Domain Height

Computations with 3, 6, 9 and 12 §oysf10s are carried out to assure that the
free-stream boundary is not influencing the results. All other parameters
stay the same while the number of points in the y-direction are increased.
Figure B.1 shows that three boundary layer thicknesses are too low and,
therefore, the amplification rates differ, especially where the wave is highly
amplified, from the other three cases. The cases with six and nine boundary
layer thicknesses in the domain are identical except the fact that the expan-
sion fan originating from the disturbance slot hits the free-stream boundary
later and causes a slight oscillation of the amplification rate farther down-
stream. For the three boundary layer thickness case, this modulation is
farther upstream and therefore not visible in figure B.1.

The domain height can also have an influence on the amplitude and phase
distribution. Figure B.2 shows slight deviations of the free-stream (n > 10)
only for a domain height of 3 dout 100 -

From these results, a domain height of 6 Oout flow should be reasonable for
further computations, but the oscillations in the amplification rate are un-
satisfactory. The computation with 12 Ooutflow 1S high enough so that the
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Figure B.2 Influence of different domain heights on the amplitude distribu-
tions (left column) and phase (right columin) of v, ¢’ and 7" at R, = 500 (32
points per A;, 10 points per §).

expansion fan does not hit the free-stream and no wiggles are present. It
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Figure B.3 Influence of the domain length (32 points per /\z, 10 points per
0, stretched 9 § high).

shows a perfect alignment with the 9 8,410, case upstream of the oscilla-
tions. Because of the computational cost an equidistant grid is unreasonable.
Therefore, stretched grid studies are also performed (see appendix B.1.7).

B.1.2 Domain Length

To ensure a domain without any interferences of the inflow and outflow
boundaries, the overall domain length is under investigation in this section.
In figure B.3 all results are perfectly aligned demonstrating that the upstream
influence of the outflow is negligible. Figure B.3 also shows that three wave-
lengths after the disturbance slot (z2) this wave has not fully developed before
propagating out of the domain. The five, seven and nine wavelength cases
all coincide leading to the conclusion that the domain length has to be at
least 5 A; long. Nonetheless, the overall domain length also depends on the
region of interest.

B.1.3 Inflow Location

If the inflow boundary is too close to the disturbance slot, a modulation of
the amplification rate can be experienced. To exclude this possible influence,
four different locations of the inflow are investigated, where the disturbance
slot stays at a fixed physical position. Figure B.4 shows that there is no
visible difference between the one wavelength-case and the half wavelength
case. For a spacing of a quarter wavelength between the disturbance slot
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Figure B.4 Influence of the inflow boundary location (32 points per )., 10
points per 4, 9 § high).

and the inflow boundary, the amplification rate is first larger than for the
other cases, but, from R, = 500 on, all amplification rates agree well. For
a distance of X, /8, the amplification rate curves do not differ from the case
with the largest largest spacing.

B.1.4 Disturbance Slot Location

The influence of the inflow on the amplification rate is investigated by look-
ing at different downstream locations of the disturbance slot. The chosen
distances of A, /2, A, and 2), show that the location of the disturbance slot
does not significantly influence the amplification rates far downstream (see
figure B.5). Farther upstream (R, < 650), the differences in the amplifica-
tion rates show that there is still some adjustment and wave development for
the 2);-case. Due to the outcome of the study on different inflow locations
(see appendix B.1.3) the differences between the two cases with \,/2 and A,
stam from the ongoing adjustment of the wave of the ,-case. Because the
differences of all three cases are within acceptable limits and a farther down-
stream location is more applicable for this study, a disturbance slot location
of one wavelength downstream of the inflow is chosen.

B.1.5 Outflow Location

For the linear stability investigations in 6.2, no relaminarization zone is used
because only small amplitudes are under investigation and consequently a
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Figure B.5 Influence of the disturbance slot location (32 points per Az, 10
points per §, 9 § high).
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Figure B.6 Upstream influence of the outflow boundary (32 points per X,
10 points per J, 6 é high).

buffer zone would only increase the number of points without enlarging the
usable domain. Therefore, the upstream influence of the outflow boundary
condition has to be examined. For a frequency of F' = 8.1 x 10~%, the last
point of interest is at about R, = 800. From that point on, the domain
is enlarged downstream by 1, 2 and 3 A, for this investigation. Figure B.6
shows that two wavelengths are sufficient to avoid any upstream influences.

B.1.6 Wall-Normal Resolution

To investigate how the resolution in the y-direction is influencing the ampli-
fication rates, computations with 5, 10 and 15 points per &, i, are carried
out. Figure B.7 shows the low resolution case results in a wrong amplifica-
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Figure B.7 Low resolution case (left) and higher resolution cases (right) in
the y-direction (32 points per A;, 66 high).

tion rate. The two higher resolution cases (see also figure B.7) collapse to
one curve suggesting that ten points per d;, 0, are sufficient to capture the
right amplification rate. ’

B.1.7 Grid Stretching in the Wall-Normal Direction

Not to influence any physical properties of the flow, the grid is only stretched
above two boundary layer thicknesses. Thus, the second maximum of the
amplitude distribution remains in the equidistant region. The stretching
function enlarges the domain to 6 and 9 d,uts10w, keeping the stretching fac-
tor constant. Comparing the results to the computations performed on an
equidistant grid show that the wiggles of the amplification rate disappeared.
The reason for this that the grid stretching introduced an additional damping
by an artificial viscosity caused by the stretching function. So the expansion
fan hitting the free-stream boundary is an order of magnitude smaller and,
therefore, small enough not to influence the amplification rate any more.
Nevertheless, the six and nine domain height cases agree well with the 12-
Ooutflow Case on an equidistant grid (see figure B.8). The lowest domain height
for a stretched grid still shows a slight oscillation revealing that the reflec-
tion from the shock wave still has a small impact on the amplification rate.
The stretched 9 and equidistant 12-dpy:f10, cases are in perfect agreement
(see figure B.9), hence a domain height of 9 boundary layer thicknesses on a
stretched grid is suited for this investigation. To verify that the stretching
has no influence on the amplitude and phase distribution, a comparison with
the equidistant 12 6,u¢5100-case is performed (see figure B.10).

The resulting domain height of nine boundary layer thicknesses seems high,
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but as pointed out in section 3.4.4, the flow is assumed to be steady at the
free-stream. For the high frequencies under investigation this is a rough
approximation, so the domain height increases. The additional damping
caused by the stretched grid and the fact that only a third of the points as
in the equivalent equidistant case are used, clearly shows that the stretched
grid is not only the better choice from a physical point of view but also from
a computational point of view, reducing the computation time drastically.

B.1.8 Streamwise Resolution

Computations are performed on a grid which is equidistant over the first
two boundary layer thicknesses from the wall and is then stretched to a
total height of nine boundary layer thicknesses (chosen in accordance to sec-
tion B.1.7). The grid in the downstream direction is equidistant. The number
of grid points per TS—-wavelength are varied to determine the regular reso-
lution. The 16 points per TS-wave case still shows strong oscillations, how-
ever, the two higher resolutions are in very good agreement(see figure B.11).
Therefore, 32 points per wavelength are chosen in the stability investigations.

B.2 Oblique Breakdown Simulations

For the validation cases and the linear stability investigations, all calculations
were performed on an equidistant grid. Since the resolution does not need
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to be high to simulate 3D waves in the linear stage, an equidistant grid
is not a disadvantage. For oblique breakdown this is not true anymore.
When the 3D waves start to interact with each other, smaller structures are
being created and these structures need to be resolved. For that reason,
a high resolution is required at positions where smaller structures emerge
and not further upstream where the 3D waves are in the linear stage. The
DNS code used for all presented simulations has the capability to use a
stretched grid in the z- and in the y-direction. This feature was applied
for all oblique breakdown simulations. Figure B.12 shows the computational
grid used for the simulation of case OBLNP2. The grids for all other oblique
breakdown simulations (cases OBLNP3, OBLNP4 and OBLPQG) are similar.
The parameters which are necessary to create such a grid can be found in
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Figure B.12 Computational grid for the simulation OBLNP2. Every fifth
point is plotted for clarity.
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Figure B.13 Parameters for the generation of the computational grid.

figure B.13. For the z-direction, z is the location where the stretching
starts. The equidistant grid upstream of z;; has the stepsize A. At position
Zs2 the stretching ends and downstream of z4; the grid is equidistant again
with the stepsize Az. The stepsize Az is calculated from the stepsize A%
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and the specified ratio Az/AZ. For the oblique breakdown calculations this
ratio is smaller than 1, so that the grid becomes finer with increasing z. For
the y-direction, y,; is the location where the stretching starts. The stretching
ends at the upper boundary, that means at yas with the stepsize Aj-Ay/Ag.
Simulation OBLNP2 is a test case which was conducted to find out if the grid
stretching has an influence on the amplification rate ¢; of a 3D disturbance in
the linear stage. Case OBLNP1 is a calculation performed on an equidistant
grid with a fine resolution. Both calculations have the same flow and forcing
properties as the simulations for the supersonic validation. A more detailed
summary of the input data for the DNS can be found in appendix C. The
amplitude distribution over z of the u-velocity of case OBLNP1 serves as
comparison for case OBLNP2. Since the grid of case OBLNP1 is finer than for
the supersonic validation cases presented in § 4, the amplitude distribution of
case OBLNP1 describes the correct physical behavior. Figure B.14 contains
the results of both calculations. The slope of the curves are the same which
means that both simulations produce the same amplification rate o;.
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Figure B.14 Amplitude distribution versus z for cases OBLNP1 and
OBLNP2.
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APPENDIX C: Computational Details

The parameters that are used for the computational simulations are listed in
the following tables. All baseflow calculations are performed with adiabatic
walls (unless stated otherwise), whereas the (unsteady) forced flow calcula-
tions are carried out with isothermal walls,i.e., the baseflow temperature
distribution.

] Thumm Al || Eissler C |
Physical parameters:
Ma 1.6 4.8
Re 100,000 100,000
Pr 0.71 0.71
3 1.4 14
Tuat adiabatic 650 K
wall 0 0
T 300K 220 K
Poo 101.3 kPa, 2.5501 kPa
Computational parameters:
N, 300 800
n, 150 121
At 0.001256 |l 0.0062831853
Az 0.03704 0.0238
JAN T 0.00125 0.007
Ayys 0.1875 0.007
Az 0.4133 0.5711987
Ystreteh 0.125 N/A
YM 3.0 0.847
Zramp N/A 51.5
Forcing parameters:
B 5.0025 10
Al,O 0 5x 1072
Al,l 5x 1075 1x 1073
Ty 1.44732 - 44.9568
o 1.8332 45.2424

Table C.1 Parameters for the supersonic validation cases of Thumm (1991)
and Eissler (1995).
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ICVALDC ICVALFR CVALNP CVALPG |

Physical parameters:

Re 10° 10° 1578102 1578102
Ma 0.25 0.1 3.0 3.0
T 300K 224K 103.6K - 103.6K
Pr 0.71 0.71 0.71 0.71

K 14 1.4 1.4 1.4

By 0.0 -0.18 0.0 —0.04... — 0.08
Domain size:

Zo 0.54 1.585 0.0396 0.5116 (0.0396)
Ty 4124 5.844 2.2716 2.1036 (3.1920)
Y ~ 0.1 0.22 0.0199 0.0199

Ay N/A 2.0520 x 107! || 4.4239 x 102 || 3.7920 x 102
Buffer domains and decay condition:

z . N/A 1.673 N/A N/A

zin, N/A 2.060 N/A N/A

zo N/A 2.800 1.8796 1.7036
zou N/A 4.200 2.1756 2.0236

e’ 37.6 29.8 70.0 74.0

c N/A N/A 0.7 0.7

Grid size and resolution:

Ng 513 506 280 200 (400)
ny 88 292 200 200

K 0 2 1 1

At 1x107* | 4.8481 x 1073 | 3.3179 x 1075 || 3.3179 x 10~®
Az 7x 1073 | 8.4340 x 1073 || 8.0000 x 1073 || 8.0000 x 10~3
Af 5x10™* | 5.7300 x 10~ || 1.0000 x 10~ || 1.0000 x 10~*
Forcing parameters:

B 14.0 10.8 . 47.343 47.343
AI,O 1x 1074 1x 1076 N/A N/A

Agq N/A 2 x 106 1x 1078 1 x 10~12
zy 0.82 2.082 0.2236 0.6956

Zo 0.89 2.293 0.2716 0.7436

Table C.2 Parameters for the pressure-gradient validation cases; baseflow
computations are carried out in 2D, values which differ otherwise are given
in brackets; pressure-gradient parameters for case CVALPG are: z3 = 0.6,
z4 = 2.0, z5 = 2.6, Ap; = 0.8, Apy, = 0.6 and transdz = 0.1.




F=14-10° | F=50-10° || F=8.1-10°5
[ Physical parameters:
Ma 3.0 3.0 3.0
Re 1,578,102 1,578,102 1,578,102
Pr 0.71 0.71 0.71
K 14 14 1.4
Towall adiabatic adiabatic adiabatic
wall 0 0 0
T 1036 K 103.6 K 103.6 K
Poo 0.7508 kPa, 0.7508 kPa 0.7508 kPa,
Computational parameters:
Ny 400 280 434
n, 236 328 182
At 5.636138-107° | 1.61085-107° || 4.973063-10~°
Az 4.20175-1073 1.6228-1073 1.07456 - 103
AYwa 9.72584 - 1075 3.51-107° 6.3776 - 1075 .
Ayys 9.72584-107% | 2.2113-107% | 1.721952-1073
Az 0.0970526 0.0299817 0.0198527
Zg 0.017836 1.591725-10"3 | 6.3669-1073
Ystretch N/A 9.7578-1073 || 8.3706-1073
YM 0.022953 0.047 0.0392
Forcing parameters:
5} 22.29607 78.0107 126.34437
A 5-.1074 5.107° 5.10%
1 0.08086225 0.027556525 0.04075282
Zo 0.101871 0.040519725 0.05794578

Table C.3 Parameters for the simulations for comparison with the experi-
ments of Graziosi (1999) and Graziosi & Brown (2002).
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F=81-10"°

| F=5.0-10"° F=15-10* | F=20-10"*
Physical parameters:
Ma 3.0 3.0 3.0 . 3.0
Re 1,578,102 1,578,102 1,578,102 1,678,102
Pr 0.71 0.71 0.71 0.71
K 14 14 14 14
Twau adiabatic adiabatic adiabatic adiabatic
wall 0 0 U 0
Teo 103.6 K 103.6 K 103.6 K 103.6 K
Poo 0.7508 kPa 0.7508 kPa, 0.7508 kPa, 0.7508 kPa,
Computational parameters:
Ny 600 570 384 384 -
ny 174 134 180 224
At 8.05426 - 107° || 4.973063 - 10~° 2.651-107° 1.9899 - 10~°
Az 1.6228-1072 || 1.07456-10~3 7.3125-1074 4.63-10*
AYau 1.3299-10~* | 1.40307-10~* 6.63-107° 3.536 - 1075
JAVITR 7.9794-107% || 2.806144 - 1073 4.641-1073 6.3648 - 10~3
Az 0.0299817 0.0198527 0.01351 8.55384 - 1073
Zo 0.3105 0.0254676 1.591725- 1072 || 1.591725-10~2
Ystretch 0.0170227 0.017858 8.619-1073 6.15264 - 1073
Yum 0.143 0.0631 0.087 0.111
Forcing parameters:
B8 78.0107 126.34437 237 315.758
A 5-107° 5.10™* 5-107° 5.10°°
z 0.3624296 0.05985352 0.024991725 8.9997 - 10~°
) 0.3883944 0.07704648 0.036691725 0.01641325

Table C.4 Parameters for the simulations for investigation
effects.

of non-parallel
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OBLNP1 OBLNP2 OBLNP3 OBLNP4 OBLPG
Physical parameters: , .
Re 1578102 1578102 1578102 1578102 1578102
Ma 3.0 3.0 3.0 3.0 3.0
TZ 103.6K 103.6K 103.6K 103.6K 103.6K
Pr 0.71 0.71 0.71 0.71 0.71
K 14 14 14 14 14
B 0.0 0.0 0.0 0.0 ~ —0.12
Domain size:
Zo 0.35644 0.35644 0.35644 0.95244 0.95244 (0.35644)
TN 1.31244 1.31211 1.3095 2.01177 2.01177 (2.48277)
YMm 0.0369 0.03687 0.0366 0.037 0.037
Az 410x 1072 || 410 x 1072 || 410 x 1072 || 4.10 x 102 3.73 x 1072
Buffer domains and decay condition:
x%t, N/A N/A 1.20644 1.86277 1.86277
T N/A N/A 1.30644 2.00277 2.00277
o 70.0 70.0 70.0 70.0 78.5
c 0.7 0.7 . 0.7 0.7 0.7
Grid size, resolution and stretching:
Ny 240 430 585 550 550 (1170)
Ty 370 80 130 140 140
K 1 1 . 54 15 15
At 1.33x 1074 [ 1.33 x 1074 || 1.33 x 10~* || 1.33 x 10~* 1.33 x 1074
A% 4% 1072 4x 1073 4x1073 4x1073 4x10°%
Af 1x10™ 1x10™* 1x10™* 1x10™* 1x107*
Zs1 N/A 0.63244 0.63244 1.25644 1.25644
T2 N/A 1.18044 1.18044 1.74044 1.74044
2z N/A 0.25 0.125 0.25 0.25
Ys1 N/A 0.0 0.005 0.0 0.0
I~ N/A 12.0 10.0 6.0 6.0
Forcing parameters:
B 47.343 47.343 47.343 47.343 47.343
A1y 1075 10°° 0.003 0.0054 0.0014
z; 0.54444 0.54444 0.54444 1.12444 1.12444
Zg 0.62444 0.62444 0.62444 1.19644 1.19644

Table C.5 Parameters for the oblique breakdown simulations; baseflow com-
putations are carried out in 2D, values which differ otherwise are given in
brackets; pressure-gradient parameters for case OBLPG are: z3 = 1.15644,
z4 = 1.97244, z5 = 2.27644, Ap, = 0.53, Ap, = 0.53 and transdz = 0.1.
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